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Аннотация. Приведена постановка краевой задачи об изгибе пятислойного симметричного по толщине стержня.  
Центральный и внешние слои предполагаются несущими, тонкими, повышенной жесткости, воспринимают основную 
часть механической нагрузки. В них деформирование подчиняется гипотезам Бернулли. Два относительно толстых  
жестких заполнителя обеспечивают перераспределение усилий между несущими слоями. Для них справедливы гипотезы 
Тимошенко. Для вывода системы дифференциальных уравнений равновесия стержня применен принцип возможных 
перемещений. Получены аналитическое решение краевой задачи и расчетные формулы для перемещений при 
равномерно распределенной нагрузке. Проведена численная апробация полученного решения. 
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Введение 
Применение слоистых конструкций в раз-

личных сферах современной техники и строи-
тельства интенсивно продолжается с начала 40-х 
годов прошлого века. Это потребовало разработ-
ку методик расчета слоистых элементов конст-
рукций, учитывающих воздействие внешней 
среды. В монографиях [1]–[7] предлагаются рас-
четные модели трехслойных стержней, пластин и 
оболочек, учитывающие не только различные 
внешние силовые нагрузки, но и влияние темпе-
ратурных и радиационных воздействий.  

В статьях [8]–[13] приведены решения ряда 
частных задач о динамическом воздействии на 
композитные, в том числе трехслойные стержни 
и пластины, в которых кинематические гипотезы 
приняты индивидуально для каждого слоя. Не-
сущие слои жесткие, подчиняются гипотезам 
Бернулли (Кирхгофа). В легких заполнителях 
справедлива гипотеза Тимошенко, т. е. учитыва-
ется деформация относительного сдвига.  

В статьях [14], [15] исследованы законо-
мерности, присущие волнам в одномерных и 
двумерных элементах конструкций, проводится 
сравнение характеристик волн, распространяю-
щихся в пластинах на упругом основании. Урав-
нения свободных колебаний пятислойных круг-
лых симметричных по толщине пластин и 
стержней получены и исследованы в работах 
[16]–[18]. Решения получены в виде разложения 
искомых перемещений в ряды по системам соб-
ственных функций.  

Влияние сжимаемости заполнителя на де-
формирование трехслойной пластины исследо-
вано в [19], функция сжимаемости принята ли-
нейной по толщине заполнителя. Термосиловое 
деформирование круговой упругопластической 
пластины нагрузкой, параллельной плоскости 
пластины, рассмотрено в статье [20]. Влияние 
упругого основания на напряженно-деформиро-
ванное состояние трехслойных пластин исследу-
ется в работах [21]–[24].  
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В статье [25] рассмотрен изгиб круглой пя-
тислойной пластины локальными нагрузками.  
В работе [26] для получения системы дифферен-
циальных уравнений равновесия пятислойного 
стержня с двумя заполнителями применен метод 
Лагранжа.  

Здесь приводится решение задачи об изгибе 
симметричного по толщине пятислойного 
стержня и его численное исследование.  

 
1 Постановка задачи об изгибе пятислой-

ного стержня 
В пятислойном, симметричном по толщине 

стержне введена декартова система координат, 
связанная со срединной плоскостью внутреннего 
несущего слоя (рисунок 1.1). В достаточно тон-
ких жестких несущих слоях (1, 2, 4) справедливы 
гипотезы Бернулли о плоскостности и нормаль-
ности поперечных сечений деформированной 
осевой линии. Для описания деформирования 
сравнительно толстых заполнителей (3, 5) при-
меняется гипотеза Тимошенко, учитывающая 
поворот нормали на дополнительный угол (x) – 
относительный сдвиг. Вместе с прогибом стерж-
ня w(x) эти функции являются искомыми. На-
грузка q равномерно распределена по поверхно-
сти стержня.  

 

 
 

Рисунок 1.1 – Нумерация слоев и нагрузка 
в пятислойном стержне 

 
Продольные перемещения ( )k

xu  в слоях  

(k = 1, 2, 3, 4, 5 – номер слоя) выражаются через 
искомые функции формулами, следующими из 
принятых гипотез:  

(4)
1, ψ, при ,x xu zw c c h z c h h         

 (5) , ψ, при ,x xu zw z h h z c h        
(1) , , при ,x xu zw h z h      

 (3) , ψ, при ,x xu zw z h h c z h          
(2)

1, ψ, при ,x xu zw c h h c z h c          (1.1) 

где z – координата рассматриваемой точки попе-
речного сечения; h, h1 c – толщины слоев; запя-
той в индексе обозначена операция дифференци-
рования по координате x.  

Используя перемещения (1.1) и соотноше-
ния Коши [1], получим продольные деформации 
(нумерация в соответствии с рисунком 1.1):  

(4) (4), , ; 0;x xx x xzzw c        

(5) (5), ( ) , ; ;
2x xx x xzzw z h


         

(1) (1), ; 0;x xx xzzw      

(3) (3), ( ) , ; ;
2x xx x xzzw z h


         

(2) (2), , ; 0.x xx x xzzw c                 (1.2) 

Напряжения в слоях определяются через 
деформации (1.2) с помощью закона Гука в де-
виаторно-шаровой форме: 

( ) ( ) ( ) ( )2 , σ 3 ,k k k k
xx k xx ks G э K    
(3) (3) (5) (5)

3 52 , 2 ,xz xz xz xzs G э s G э             (1.3) 

где ( ) ,k
ijs  ( )k

ijэ  – девиаторы тензоров напряжений 

и деформаций, ( ) ,k  ( )k  – средние напряжения и 

деформации в слоях; ,k kG K  – модули упругости 

материалов слоев.  
Система дифференциальных уравнений 

равновесия рассматриваемого стержня получена 
с использованием принципа возможных переме-
щений Лагранжа: 

δA = δW,                             (1.4) 
где δA – вариация работы внешней нагрузки; 
δW  – виртуальная работа внутренних усилий 

0

0

δ δ = δ ;
l

S

A q wdS b q wdx    

5
( ) ( ) (3) (3) (5) (5)

3 5
1

δ

(σ δε σ δε σ δε ) ;
k

k k
x x xz xz k xz xz k

kS h

W

dzdS




     
 

b0 – ширина поперечного сечения; δ – оператор 
варьирования; δki – символы Кронекера.  

С помощью соотношений (1.1)–(1.4) полу-
чена [26] система дифференциальных уравнений 
равновесия в виде: 

1 2 3, , 0,xx xxxa a w a      

2 4, , ,xxx xxxxa a w q                     (1.5)  

где коэффициенты 

2
1 2 3 1

2
2 ,

3
a c K c K h        

 

2
2 2 3 1 1

1
(2 3 ) ( 2 2 ) ,

3
a K c c h K h c h h c        

 

(2)
3 2 ,a G c   

 

3
2 2

4 2 1

2
3 1 1 1

2 2
( 3 3 )

3 3

2
3( )( ) .

3

h
a K c c hc h K

K h h h h c h c

 




    


     

 

Для замыкания краевой задачи к системе 
(1.5) необходимо добавить граничные условия. 
В этом качестве принимаем условия жесткой 
заделки торцов стержня (x =0; l): 

( ) ( ) , ( ), 0.xx w x w x t                (1.6) 
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2 Аналитическое решение краевой задачи 
Проинтегрируем второе уравнение системы 

(1.5) и с его помощью из первого уравнения по-
лучим отдельное уравнение для определения 
относительного сдвига ψ(x):  

2
1, ,xx qx C                      (2.1) 

где C1 – константа интегрирования, 

2 3 4 2
2 2

1 4 2 1 4 2

, .
a a a

a a a a a a
   

 
 

Вид решения уравнения (2.1) зависит от 
знака перед коэффициентом 2.  Численное ис-

следование показало, что разность 2
1 4 2 0a a a   и 

не уходит в бесконечность [26].  
В результате решение уравнения (2.1) и 

прогиб стержня, следующий из второго уравне-
ния системы (1.5), будут 

0 1
2 3 2 2

sh( ) ch( ) ,
q x C

C x C x
 

      
 

 

2
3 2 02 2

2
4 4

ch( ) sh( )
2

C a q xa C
w x x

a a

 
         

4 30 2
1 2

4 44

1

24 6

q a
x C x x

a aa

 
      

 

2
4 5 6

1
.

2
C x C x C                     (2.2) 

Определим константы интегрирования для 
случая жесткого защемления торцов стержня. 
Удовлетворяя решением (2.2) требованиям (1.6) 
получим следующую алгебраическую систему 
уравнений 

0 1
2 3 2 2

sh( ) ch( ) 0,
q l C

C l C l
 

     
 

 1
3 2

0,
C

C


 


 

 
3

2 0 02
2 3 2

4 44

2
2

1 4 52
4 4

sh( ) ch( )
6

0,
2

a q l q la
C l C l

a aa

al
C lC C

a a


     



 
      

 

2 2
3 1 52

4 4

0,
a a

C C C
a a


  


 2

2 6
4

0,
a

C C
a

 


 

 
2 3

2 02 1
2 3 2

4 44

sh( ) ch( )
62

a q la C l
C l C l

a aa


     

 
 

4 2
01 2 4

5 62
44

0.
24 2

q lC a l C l
lC C

aa


     


     (2.3) 

Решив систему уравнений (2.3) получим 
константы интегрирования при жесткой заделке 
торцов стержня: 

 
  

  
   

2 3
2

2 0

1 2 2
2

2

12 sh( )

24 ch 1
,

2 6 1 sh( )

24 ch 1 1

l l a l

a l q
С

l l a l l

a l l

     

    


     

    

 

 
  

  
   

3 4
2

2 0

2 2 2
2

2

12 sh( )

24 ch 1
,

2 6 1 sh( )

24 ch 1 1

l a l

a l q
С

l l a l l

a l l

    

   


     

    

 

 

3 12
,С С





 

 

  
  

  
     

  
   

2 3
2

2 2 2 4 5
2

2

2 2 2
2

4 02 2 2
4 2

2

72 2 1

6 4 sh( )

24 ch 1

6 2 1 3
,

12 6 1 sh( )

12 ch 1 1

l l l a

l l l a l l

l a

l l a l l l
С q

l a l l a l l

a l l

    

       

   

       
 

      

    

 

 

5 0,C   

2
6 2

4

.
a

С С
a

 


                     (2.4) 

 
3 Численные результаты 
Получены при равномерно распределен-

ной нагрузке 0 2,5 МПа.q   Для основной рас-

четной модели принимаем несущие слои выпол-
ненными из дюралюминия Д16-Т, заполнители – 
из фторопласта-4. Толщины слоев, отнесенные к 
длине стержня, в (2.2), (2.3) полагались 

1 0,02,h h   0,1,c   1l   м. Упругие характе-

ристики используемых материалов заимствованы 
в [1]. 

На рисунке 3.1 приведены графики измене-
ния прогиба – а) и относительного сдвига – б) по 
длине стержня с различными материалами 
внешних несущих слоев: 1 – Д16-Т; 2 – титано-
вый сплав; 3 – кордиерит. Центральный несущий 
слой – Д16-Т, заполнители – фторопласт-4. При 
замене дюралюминия на титановый сплав мак-
симальный прогиб уменьшается примерно на 
12%, относительный сдвиг практически не изме-
няется. В случае кордиерита расчетный прогиб 
уменьшается на 43%. Относительный сдвиг 
уменьшается на 38%.  

На рисунке 3.2 показано уменьшение мак-
симального прогиба – а) и максимального отно-
сительного сдвига – б) при увеличении толщины 
внешних несущих слоев h1. Нумерация кривых 
прежняя. Центральный несущий слой – Д16-Т, 
заполнители – фторопласт-4. При замене дюра-
люминия на более жесткие материалы скорость 
уменьшения максимальных прогибов и относи-
тельных сдвигов возрастает с увеличением тол-
щины несущих внешних слоев.  
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Рисунок 3.1. – Изменение перемещений по длине стержня 
 

      
 

Рисунок 3.2. – Изменение максимальных перемещений 
в зависимости от толщины  внешних несущих слоев h1 

 
Выводы 
Предложенная система дифференциальных 

уравнений равновесия, полученное аналитиче-
ское решение и проведенный численный анализ 
позволяют исследовать перемещения при изгибе 
пятислойного упругого стержня с двумя запол-
нителями, симметричного по толщине.  
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