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Аннотация. Рассматривается обобщение теоремы Фостера на случай антенны, излучающей в свободное пространство. 
Показано, что производная по частоте от фазы коэффициента отражения на входе антенны является положительной 
величиной и пропорциональна временной задержке излучаемого радиоимпульса. На основе леммы Лоренца и анализа 
энергетического баланса в объёме, окружающем антенну, выведено соотношение, связывающее эту задержку 
с запасом реактивной энергии в ближней зоне антенны. Полученное соотношение позволяет экспериментально 
определять время задержки по измеренным параметрам коэффициента отражения и использовать эту величину 
в качестве диагностической и сравнительной характеристики антенн. Теорема имеет практическую ценность для 
проектирования антенн и понимания фундаментальных физических ограничений. 
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Введение  
В классической теории цепей и пассивных 

линейных систем широко известна теорема Фос-
тера [1], утверждающая, что для любого пассив-
ного двухполюсника без потерь производная 
реактивного сопротивления (или проводимости) 
по частоте строго положительна. Эта теорема 
является прямым следствием принципа положи-
тельности запасённой реактивной энергии и иг-
рает ключевую роль при анализе резонансных 
цепей, синтезе фильтров и оценке физической 
реализуемости импедансов [2], [3]. Однако её 
применение традиционно ограничено закрытыми 
или внутренними цепями, где энергия локализо-
вана в реактивных элементах (индуктивностях и 
ёмкостях), а излучение отсутствует. 

В то же время, антенна, как физическая сис-
тема, принципиально отличается от классического 

двухполюсника: она представляет собой откры-
тую электродинамическую структуру, предна-
значенную для преобразования энергии источни-
ка в излучаемые электромагнитные волны.  
В такой системе энергия не только запасается  
в ближней зоне в виде реактивных полей, но и 
непрерывно уходит в дальнюю зону в виде излу-
чения. Это делает прямое применение классиче-
ской теоремы Фостера к антеннам некорректным 
и требует её обобщения с учётом излучательных 
процессов. 

Несмотря на значительный прогресс в ан-
тенной теории и теории электромагнитного из-
лучения, в доступной литературе отсутствует 
строгое обобщение теоремы Фостера на случай 
антенны, излучающей в свободное пространство. 
Большинство работ, посвящённых анализу час-
тотных характеристик антенн, ограничиваются 
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либо численным моделированием, либо эмпири-
ческими оценками ширины полосы пропускания 
и добротности [4], [5]. В то же время понимание 
связи между фазой коэффициента отражения, 
запасённой реактивной энергией и временной 
задержкой излучаемого сигнала имеет фунда-
ментальное значение как для теории, так и для 
практики – особенно в задачах сверхширокопо-
лосной связи, импульсной радиолокации и ми-
ниатюризации антенн. 

Интерес к этой проблеме возобновился в 
контексте анализа фундаментальных пределов 
антенн. В работах [6]–[8] показано, что мини-
мально достижимая добротность антенны связа-
на с объёмом её реактивного поля и определяет 
пределы полосы пропускания и временной дис-
персии. Особенно актуальной становится связь 
между временной задержкой радиоимпульса и 
фазовой характеристикой коэффициента отраже-
ния, поскольку именно эта задержка определяет 
искажения сигнала в импульсных системах. 

В настоящей работе предлагается обобще-
ние теоремы Фостера на случай антенны в сво-
бодном пространстве. Показано, что производная 
по частоте от фазы коэффициента отражения на 
входе антенны является положительной величи-
ной и пропорциональна временной задержке из-
лучаемого радиоимпульса. На основе леммы Ло-
ренца и анализа энергетического баланса в объё-
ме, окружающем антенну, выведено соотноше-
ние, связывающее эту задержку с запасом реак-
тивной энергии в ближней зоне. Полученный 
результат позволяет экспериментально опреде-
лять временную задержку по измеренным S-па-
раметрам и использовать её в качестве диагно-
стической и сравнительной характеристики ан-
тенн. Теорема имеет не только теоретическую, 
но и практическую ценность для проектирования 
антенн, особенно в условиях жёстких требований 
к временной и частотной стабильности сигнала. 
 

1 Формулировка задачи  

Пусть поле 1,E


 1H


 – поле антенны на час-

тоте 1,  2 ,E


 2H


 – на частоте 2 .  Поле *
2 ,E


 
*
2 ,H


 удовлетворяет уравнениям Максвелла, 

поэтому можно применить лемму Лоренца к по-

лям 1,E


 1H


 и *
2 ,E


 *
2H


 в объеме V. 

Поверхности, ограничивающие V (рисунок 
1.1), состоят из ,RS  которая охватывает антенну 

во внешнем пространстве, aS  – поверхность ан-

тенны, условно изображенной в виде рупора, 
повторяющая идеально проводящую конструк-
цию антенны, и участок фS  – поперечное сече-

ние питающего волновода, n


 – нормаль. 
Учитывая, что в объеме V отсутствуют сто-

ронние токи и на поверхности aS  тангенциальная 

составляющая поля E


 равна нулю, лемма Ло-
ренца примет следующий вид: 

 * *
2 1 1 2

ф RS S

E H E H d S


       
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   * *
2 1 1 2 1 2 .

V

i E E H H dV    
  

    (1.1) 

 

 
 

Рисунок 1.1  Рупорная антенна в свободном 
пространстве 

 
В сечении волновода фS  поля представим в 

виде 
*

1 1 1 ;E a e b e 
 

 
* * * *
2 2 2 ;E a e b e 
  

 
*

1 1 1 ;H a h b h 
 

 
* * * *
2 2 2 ,H a h b h   

  
 

где ,e


 h


 – поле рабочего типа волны; 1,a  1b  – 

амплитуды падающей от генератора на антенну и 
отраженной волны на частоте 1;  2 ,a  2b  – ам-

плитуды на частоте 2.  

Примем условия нормировки (учитывая на-

правление нормали )n


 

*1
Re 1.

2
фS

e h d S
 

     
 


 
 

После вставки в (1), получим 

   * * * *
1 2 1 2 2 1 1 24 1

фS

a a E H E H d S          
   

  

   * *
2 1 1 2 1 2 ,

V

i E E H H dV    
  

     (1.2) 

где 
b

a
   – коэффициент отражения в волноводе, 

,ie       – фаза коэффициента отражения. 

 
2 Доказательство теоремы Фостера для 

антенны 
Предположим, что поверхность RS  – сфера 

радиусом R в дальней зоне антенны. Учитывая 

связь E


 и H


 в этой области, получим 
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 * *
1 2 1 2*

1 2

1
1

2
фS

E E dS
wa a

   


  

 * *2 1
1 2 1 2*

1 2

,
4 V

i E E H H dV
a a

 
   

  
    (2.1) 

где w





 – волновое сопротивление про-

странства.  

Представим поле E


 антенны в дальней зоне 
в виде 

   
 

, , , .
ik Re

E R
R

 

     
 

       (2.2) 

Здесь  ,  


 определяет ненормированную 

амплитудно-фазовую и поляризованную харак-
теристику антенны в зависимости от угловых 
координат; R   – разность хода между точкой 
в сечении фS  фидера антенны и началом вы-

бранной системы координат , , .R    

После подстановки (2.2) в (2.1) получаем 

 
  2 1*

*1 2
1 2*

2 1 2 11 2 4

1 1

2

i R k ke
d
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

  
   
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 * *
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1 2

.
4 V

i
E E H H dV

a a
  

  
  (2.3) 

Далее выделим мнимую часть (2.3) и най-
дём предел 1 2 :   

     
22

2
4

,
2

d R
d

d w a 

    
      

 

  

 2 2

2

1
.

4 V

E H dV
a

  
 

      (2.4) 

Учитывая баланс энергии 

   
22 2

4

1
1 ,

2
a d

w 

      

  

получим 
    2 2

1
d

R
d

 
        


 

 2 2

2

1
.

4 V

E H dV
a

  
 

            (2.5) 

В свободном пространстве 0 0

1
,

c
    где c – 

скорость света.  
Формулу (2.5) перепишем в виде 

 2

2
1

d

d

  


 
 

 
 

 
2 2

2 2

1

4
.

1

V

E H dV
R

ca

 
 

 
 


 

      (2.6) 

Здесь в первом слагаемом в правой части 
числитель – полная энергия электромагнитного 
поля в объёме V, а знаменатель – излучаемый 

антенной поток мощности, их отношение имеет 
размерность времени. Поэтому обозначим 

 
 

2 2

2 2

1

4
.

1

V

E H dV

t
a

  


 


 

      (2.7) 

Это время, требуемое для заполнения элек-
тромагнитным полем объёма V с момента вклю-
чения генератора, питающего антенну. В резуль-
тате получим 

 
 2

02
,

1

d
t t

d

  
 

 
   (2.8) 

где 
 

0

R
t

c

 
  – время распространения сигна-

ла от точки в сечении фS  волноводе антенны до 

точки наблюдения в дальней зоне расходящейся 
сферической волны (2.2) на расстоянии R в вы-
бранной системе координат. 

Отметим, что в левой части (2.8) присутст-
вуют экспериментально измеряемые параметры 
сигнала в волноводном тракте антенны. Проведя 
соответствующие измерения, можно определить 
разность 

0 0,t t       (2.9) 

так как c – максимальная скорость распростра-
нения сигналов. 

Из (2.8), (2.9) следует неравенство 
 

0
d

d

 



.       (2.10) 

Время 0t t t    можно интерпретировать 

как задержку сигнала антенной данного типа 
(данной конструкции) при передаче радиоим-
пульсов по сравнению со скоростью света, что 
нужно учитывать, например, в радиолокации. 

Конструкция антенны определяет в том 
числе количество запасаемой мнимой реактив-
ной энергии в ближней зоне антенны [9]. Эта 
энергия влияет на величину объемного интеграла 
в (2.7) и увеличивает время t по сравнению с 0 ,t  

что и является причиной задержки радиоимпульса. 
Действительно, в промежуточной и дальней 

зоне антенны её электромагнитное поле имеет 
поперечный характер локально-плоской волны, 
вектор Пойнтинга направлен радиально и его 
мнимая часть равна нулю [9] 

2
*

0 0

1 1
,

2 4
EH R E R

w
   

   
 а также 

2 2

.H E





 
 

Баланс энергии антенны выполняется для 
любой сферы интегрирования RS  c радиусом 

:бR R      22 2 1
1 ,

2
RS

a E dS
w

   

  где 

1

3

4 2б

D D D
R

     
 – верхняя граница ближней 

зоны, D – максимальный размер антенны. 
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Рассмотрим в (2.7) часть объемного инте-
грала, включающего только промежуточную и 
дальнюю зоны антенны. С учетом вышеперечис-
ленных допущений получим 
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Это означает, что расстояние от бR  до R сигнал 

преодолевает со скоростью света. 
Таким образом, промежуточная и дальняя 

зоны антенны не влияют на величину задержки 
радиоимпульса. Кстати, это открывает возмож-
ность использования компактного полигона для 
прямых измерений времени t  задержки радио-
импульса с применением выносного приемного 
зонда, либо отражающей цели на расстоянии 

.бR R  

 В ближней зоне для расчета электромагнит-
ного поля антенны, которое может иметь все 
пространственные составляющие, следует при-
менять строгие формулы, вектор Пойнтинга ста-
новится комплексным, движение энергии имеет 
сложный характер [9]. 
 Теоретическое излучение конкретных ан-
тенн и определение влияния ближнего поля на их 
входные характеристики не всегда возможно из-
за трудности создания адекватных математиче-
ских моделей и громоздкости расчетов. 
 Формула (2.8) открывает реальные возмож-
ности экспериментальных исследований в этом 
направлении и использовании времени задержки 
радиоимпульсов t  в качестве одной из харак-
теристик антенн. 
 

Заключение 
В настоящей работе показано, что произ-

водная по частоте от фазы коэффициента отра-
жения на входе произвольной антенны представ-
ляет собой положительную величину, пропор-
циональную временной задержке радиоимпуль-
са, излучаемого антенной. Эта задержка обу-
словлена тем, что конструкция антенны опреде-
ляет количество реактивной энергии, запасаемой 
в её ближней зоне. Именно запас реактивной 
энергии в окрестности антенны является физиче-
ской причиной наблюдаемой временной задерж-
ки излучаемого импульса. 

Полученное соотношение (2.8) открывает 
возможности для экспериментальных исследова-
ний в данной области и позволяет использовать 
измеряемую величину временной задержки ра-
диоимпульсов t  в качестве одной из диагно-
стических и сравнительных характеристик ан-
тенн. 

Таким образом, доказательство теоремы 
Фостера представляет собой не просто формаль-
ную математическую процедуру, а обладает зна-
чительной практической ценностью. Данная тео-
рема может служить критерием физической кор-
ректности, выступать как эффективный инстру-
мент проектирования, а также способствовать 
пониманию фундаментальных физических огра-
ничений. 
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