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Аннотация. Предложена постановка краевой задачи об изгибе симметричной по толщине упругопластической круглой 
пятислойной пластины с двумя заполнителями. Деформирование внутреннего и внешних несущих слоев подчиняется 
гипотезам Кирхгофа. В сравнительно толстых заполнителях выполняется гипотеза Тимошенко. Физические уравнения 
состояния соответствуют теории малых упругопластических деформаций. Система нелинейных дифференциальных 
уравнений равновесия пластины получена вариационным методом Лагранжа с учетом работы касательных напряжений 
в заполнителях. Для ее решения предложен итерационный метод, основанный на методе упругих решений Ильюшина. 
Искомыми функциями являются прогиб пластины и относительный сдвиг в заполнителях. 
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Введение 
Слоистые элементы конструкций широко 

применяются в различных областях современной 
техники и строительства. Это потребовало раз-
работку методик их расчета при различных 
внешних воздействиях. В монографиях [1]–[8] 
предлагаются подходы к разработке расчетных 
моделей трехслойных конструкций, выполнен-
ных из композитных материалов, проявляющих в 
процессе деформирования физически нелиней-
ные свойства. Несущие слои, как правило, при-
няты тонкими, достаточно жесткими, подчи-
няющимися гипотезам Бернулли (Кирхгофа).  
В легких заполнителях справедлива гипотеза 
Тимошенко, т. е. учитывается деформация отно-
сительного сдвига. 

В статьях [9]–[11] рассмотрены особенности 
колебаний трехслойных стержней, связанных 

 с упругим основанием и находящихся под дей-
ствием локальных, импульсных и нестационар-
ных нагрузок. Свободные и собственные колеба-
ния трехслойных и пятислойных пластин и 
стержней исследованы в работах [12]–[14]. Для 
решения соответствующих начально-краевых 
задач использован метод разложения искомых 
перемещений в ряды по системам собственных 
функций. В статьях [15]–[17] исследованы дина-
мические характеристики цилиндрических и 
сферических оболочек с учетом влияния упруго-
го основания и нестационарного контактного 
взаимодействия.  

Деформирование трехслойных пластин, 
связанных с упругим основанием исследовано  
в публикациях [18]–[20].  

Изгиб упругой круглой пятислойной сим-
метричной по толщине пластины непрерывными 
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и локальными нагрузками рассмотрен в статьях 
[21]–[24]. Здесь приводится нелинейная система 
дифференциальных уравнений равновесия сим-
метричной по толщине упругопластической пя-
тислойной пластины.  

 
1 Постановка задачи 
В пятислойной, симметричной по толщине 

пластине введена цилиндрическая система коор-
динат, связанная со срединной плоскостью внут-
реннего несущего слоя (рисунок 1.1). В доста-
точно тонких жестких несущих слоях (1, 2, 4) 
справедливы гипотезы Кирхгофа. Для описания 
деформирования сравнительно толстых заполни-
телей (3, 5) используется гипотеза Тимошенко, 
учитывающая поворот нормали на дополнитель-
ный угол (r) – относительный сдвиг. Искомыми 
функции являются прогиб пластины w(r) и (r). 
Осесимметричная нагрузка q(r) распределена по 
поверхности пластины. На контуре (r = r0) при-
нимается наличие жесткой диафрагмы, которая 
не допускает относительный сдвиг (ψ = 0). Через 
hk – обозначена толщина k-го слоя, причем  
h2 = h4, h3 = h5.  
 

 
Рисунок 1.1 – Расчетная схема и нумерация 

слоев в пятислойной пластине 
 

Из гипотезы Тимошенко о прямолинейно-
сти нормалей заполнителей следует 
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где ψ(r) – относительный сдвиг в заполнителях 
(3), (5), запятой в индексе обозначена операция 
дифференцирования по следующей за ней коор-
динате, числовые индексы здесь и далее, если 
другое не указано, обозначают номера слоев.  

После интегрирования соотношений (1.1) 
получим формулы для вычисления радиальных 
перемещений ( )k

ru  в слоях:  
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где z – координата рассматриваемой точки попе-
речного сечения; 5 ,h   3h  – величины смеще-

ний верхнего и нижнего несущих слоев за счет 
относительного сдвига в предстоящих заполни-
телях.  

Искомыми функциями являются прогиб 
пластины w(r), радиальное перемещение u(r), 
относительные сдвиги ψ1(r) и ψ2(r). Деформации 
следуют из (1.2) и соотношений Коши [1]:  
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Связь напряжений и деформаций в слоях 
описывается соотношениями теории малых уп-
ругопластических деформаций Ильюшина [1], 
которые справедливы также и для нелинейно 
упругих материалов при прямом нагружении:  
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где ( ) ,ks  (3) ,rzs  (5) ,rzs  ( )kэ  – девиаторы, ( ) ,k  
( )k  – 

шаровые части тензоров напряжений и деформа-
ций; ,k kG K  – модули сдвига и объемной де-

формации материалов слоев, причем материалы 
внешних несущих слоев одинаковы, заполните-
лей тоже 3 5 3 5( , );G G K K   ( )k
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пластичности и физической нелинейности мате-
риалов слоев, которые при ( ) ( )k k
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в ноль; ( )k
y  – деформационный предел текучести 
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материалов несущих слоев; ( )k
s  – предел физи-

ческой нелинейности материала заполнителей. 
Используя компоненты тензора напряжений 

( )k
  ( = r, φ), введем обобщенные внутренние 

усилия и моменты в пластине: 
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Система дифференциальных уравнений 
равновесия во внутренних обобщенных усилиях 
рассматриваемой упругой пластины была полу-
чена с использованием принципа возможных 
перемещений Лагранжа в [26]:  
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На границе r = 1 должны выполняться силовые 
условия  
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Система уравнений (1.6) и силовые гранич-
ные условия (1.7) будут справедливы и в рас-
сматриваемом случае, т. к. при их выводе не бы-
ли использованы физические уравнения связи 
напряжений с деформациями.   

Используя соотношения (1.4), выразим 
компоненты тензора напряжений в слоях пла-
стины через девиаторную, шаровую части тензо-
ра деформаций и нелинейную составляющую: 
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Выделим в компонентах тензора напряже-
ний (1.8) упругие (индекс «е») и неупругие (ин-
декс «ω») слагаемые: 
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Внутренние усилия и моменты (1.5) в слоях 
пластины также разложим на линейную (индекс 
«е») и нелинейную (индекс «ω») составляющие:  
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тегральным формулам (1.5), в которых напряже-
ния ( )k

  нужно заменить соответственно на ( )k
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После этого соответствующие обобщенные 

внутренние усилия, будут 
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Так как уравнения равновесия в усилиях пя-
тислойной пластины (1.6) и граничные условия 
(1.7) были получены без привлечения физиче-
ских уравнений состояния, то ими можно вос-
пользоваться и для упругопластической пласти-
ны. Подставив в них выражения для внутренних 
усилий (1.8), получим  
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На границе r = 1 должны выполняться силовые 
условия  
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Здесь левая часть уравнений содержит ли-
нейные составляющие внутренних усилий, в ко-
торых нижний индекс «e» опущен для простоты. 
Справа сосредоточены члены с нижним индек-
сом «ω», в которые включены добавки, отра-
жающие физическую нелинейность материалов 
несущих слоев и заполнителя:  
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1
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Линейные (упругие) составляющие обоб-
щенных внутренних усилий по-прежнему выра-
жаются через перемещения формулами, введен-
ными в [25]–[28], поэтому система уравнений 
равновесия в перемещениях, соответствующая 
(1.12), сохраняет левую часть и приводится к 
виду:  

52 4 3L ), 2 ,( ra a w с pG h     

53 6( ,L ) .r qa w qa               (1.15) 

где коэффициенты и операторы  
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Для замыкания краевой задачи к системе 
(1.15) необходимо добавить силовые (1.14) либо 
кинематические граничные условия.  

 
2 Методика решения задачи 
Точное решение нелинейной системы диф-

ференциальных уравнений (1.15) с граничными 
условиями (1.14) получить не представляется 
возможным, поэтому необходимо для ее иссле-
дования применять численные или приближен-
ные методы.  

Предполагается для решения применить ал-
горитм приближенного решения задачи, осно-
ванный на методе упругих решений Ильюшина, 
который позволяет на каждом шаге итерации 
рассматриваемую задачу сводить к соответст-
вующей задаче теории упругости с некоторыми 
дополнительными «внешними» нагрузками.  
В этом случае система дифференциальных урав-
нений (1.15) принимает следующий рекуррент-
ный вид:  

( ) ( ) ( ) ( 1)
4 5 32 ( ,L ,2)n n n n

ra w сG p ha 
      

( ) ( ) (
5 6

1)
3L )( ,,n n

r
na a w q q 
           (2.1) 

где n – номер приближения.  
Нелинейные добавки ( 1) ( 1),n nq h 

   вычисля-

ются на каждом шаге итерации по результатам 
предыдущего приближения по формулам типа 
(1.14) с учетом соотношений (1.11): 
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С силовыми граничными условиями (1.13) 
необходимо проделать подобную операцию.  
 

Выводы 
Предложенная система дифференциальных 

уравнений равновесия и методика ее решения 
позволяют при изгибе исследовать перемещения 
в пятислойной упругопластической пластине 
симметричной по толщине.  
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