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Аннотация. Проведен анализ основных технологических приемов регулирования структуры и свойств композиционных 
углеродных покрытий. Обобщены экспериментальные данные о влиянии напряжения разряда, формы, длительности и 
частоты импульсов разрядов при генерации углеродной плазмы на фазовый состав и свойства углеродных покрытий. 
Проанализированы основные особенности формирования, фазовый состав и свойства углеродных покрытий, 
легированных карбидообразующими и инертными по отношению к углероду химическими элементами и соединениями, 
их изменения при термообработке. 
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Abstract. An analysis of the main technological methods for controlling the structure and properties of composite carbon 
coatings has been carried out. The experimental data on the influence of discharge voltage, as well as the shape, duration,  
and frequency of discharge pulses during carbon plasma generation on the phase composition and properties of carbon coatings, 
have been summarized. The main features of the formation, phase composition, and properties of carbon coatings doped with 
carbide-forming and chemically inert elements and compounds with respect to carbon, as well as their changes during heat 
treatment, have been analyzed. 
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Введение 
Среди материалов на основе углерода важ-

ное место отводят осаждаемым различными ва-
куумными методами углеродным покрытиям 
(УП), находящим широкое применение в маши-
ностроении, электронике, медицине и других 
отраслях [1]. Свойства углеродных покрытий 
определяются, в первую очередь, их структурой, 
типом связи между атомами, наличием леги-
рующих элементов, которые, в свою очередь, 
определяются в значительной степени методом и 
условиями их осаждения [2]. В числе углеродных 
тонкопленочных материалов, характеризующихся 

высокими механическими свойствами и наибо-
лее широким применением, выделяют углерод-
ные алмазоподобные покрытия, структура, фазо-
вый состав и свойства которых в зависимости от 
метода осаждения и последующей обработки 
может изменяться в широких пределах [3], [4].  

В настоящее время разработаны и достаточ-
но эффективно используются на практике ряд 
методов осаждения углеродных покрытий, в 
числе которых доминируют термические и плаз-
мохимические методы синтеза углеродных по-
крытий. В основе плазмохимических методов 
лежат процессы диссоциации и активации, 
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ионизации углеродсодержащих газов в электри-
ческих разрядах различной природы и мощности 
[2]. К термическим относят методы, при реали-
зации которых основным фактором является те-
пловое воздействие на углеродную мишень и 
образование в результате потока ионов углерода 
с энергией ~ 100 эВ. В качестве теплового воз-
действия наиболее эффективным является ис-
пользование импульсного катодно-дугового раз-
ряда в парах углерода, приводящего к образова-
нию потока углеродной плазмы. Данный метод 
характеризуется, в сравнении с другими, техно-
логичностью, возможностью регулирования дос-
таточно простыми приемами химического соста-
ва и конструкции осаждаемых слоев, наиболее 
высокой скоростью роста покрытий. 

Алмазоподобные покрытия проявляют вы-
сокие механические свойства, имеют микро- на-
нотвердость (10…70 ГПа), низкий коэффициент 
трения (~ 0,1), прозрачны в видимом и ИК диа-
пазоне, являются стойкими при действии агрес-
сивных химических сред. К основным недостат-
кам таких покрытий относят высокие внутренние 
напряжения (5..10 ГПа), невысокую термиче-
скую стойкость в кислородсодержащих средах 
(до 600 К), низкую прочность адгезионного со-
единения при осаждении на стальные поверхно-
сти, высокую хрупкость. При нанесении покры-
тий из плазмы импульсного катодно-дугового 
разряда в потоке содержатся микро-, наночасти-
цы графита, которые при осаждении на поверх-
ность создают высокую структурную неодно-
родность, дефектность. С целью снижения дан-
ных недостатков, повышения их эксплуатацион-
ных характеристик предложен ряд технологиче-
ских решений. В их числе наиболее эффектив-
ным является введение на стадии осаждения по-
крытий в его состав легирующих элементов, мо-
дифицирующее влияние которых заключается в 
направленном изменении фазового состава угле-
родной матрицы (соотношения sp3 и sp2 гибриди-
зированных атомов углерода, дисперсность кла-
стеров), возможном образовании с углеродом 
химических соединений или же в формировании 
твердых растворов и даже отдельных самостоя-
тельных фаз. Степень и характер модифицирова-
ния углеродных покрытий определяется в значи-
тельной степени природой и механизмом проте-
кающих физико-химических процессов, поэтому 
их изучение является актуальной задачей [5]. 

Основной целью настоящей работы являет-
ся анализ технологических особенностей форми-
рования композиционных углеродных покрытий 
из импульсной катодной плазмы, результатов 
исследований зависимости их структуры и 
свойств от химической природы и концентрации 
легирующих элементов, условий и режимов ле-
гирования, последующей обработки. 

1 Влияние условий и режимов осаждения 
углеродного потока на фазовый состав и свой-
ства покрытий 

Наиболее эффективные варианты устройств 
формирования композиционных углеродсодер-
жащих покрытий из импульсной катодной плаз-
мы представлены на рисунке 1.1. 

Представленные схемы устройств позволя-
ют реализовать следующие основные технологи-
ческие процессы нанесения композиционных 
углеродных покрытий: 

1. Формирование многослойных покрытий
на основе углерода и легирующего элемента с 
регулируемыми толщинами слоев. Осаждение 
углеродного слоя осуществляется из потока уг-
леродной импульсной плазмы, слой легирующе-
го элемента – из потока, генерируемого электро-
дуговым испарителем (рисунок 1.1 а, б). 

2. Формирование композиционных покры-
тий из плазмы импульсного катодно-дугового 
разряда, создаваемого при использовании со-
ставного или композиционного, содержащего 
легирующий элемент углеродного катода. При 
этом возможно применение ассистирующей об-
работки ионами инертных газов, а также много-
компонентное легирование покрытий ионами 
азота, генерируемых ионным источником (рису-
нок 1.1 а, г). Легирование УП азотом проводят и 
путем его напуска в вакуумную камеру. 

3. Осаждение многокомпонентно легиро-
ванных углеродных покрытий при использова-
нии дополнительно размещенных в камере элек-
тродугового (рисунок 1.1, а), ионного (рисунок 
1.1, б) источника или же магнетронного распы-
лителя (рисунок 1.1, г). 

Данные технологические варианты нанесе-
ния покрытий характеризуются различной сте-
пенью активации и концентрации легирующих 
элементов, энергетическими параметрами угле-
родной плазмы, изменение которых имеет место 
не только при использовании различных режи-
мов испарения углеродного катода, но и в ре-
зультате взаимодействия ионов углерода с ато-
мами легирующих элементов в газовой фазе. 
Данные особенности определяют в значительной 
степени зависимость структуры и свойств по-
крытий от используемой технологической схемы 
их нанесения. 

В числе важнейших технологических пара-
метров, влияющих на скорость осаждения угле-
родных слоев, их морфологию и механические, 
физико-химические свойства, выделяют режимы 
генерации углеродной плазмы: напряжение раз-
ряда, форма, длительность и частота импульсов. 
В [6] показано, что при использовании двухста-
дийного импульса с амплитудами 350 и 150 В, в 
сравнении с моноимпульсом такой же длитель-
ностью и амплитудой 350 В, микротвердость воз-
растает в 2,5…3,5 раза, уровень внутренних на-
пряжений снижается в 4…5 раз, при этом однако  
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1 – дуговой испаритель постоянного тока с металлическим (Ti, Cu, Zr, Al, Cr) катодом; 
2 – источник плазмы импульсного катодно-дугового разряда с графитовым катодом; 
2a – источник плазмы импульсного катодно-дугового разряда с композиционным  
       (металл, кремний)-графитовым катодом;  
3 – ассистирующий ионный источник;  
4 – вращающаяся технологическая оснастка с подложками;  
5 – распыляющий ионный источник;  
6 – вакуумная камера; 
7 – регулятор расхода газа (азот);  
8 – поток N2; 
9 – магнетронная распылительная система постоянного тока; 
10 – система откачки  
 

Рисунок 1.1 – Схемы вакуумных установок для получения композиционных покрытий на основе углерода
 

наблюдается снижение скорости роста в покры-
тии в 1,5…2 раза, что объясняется снижением 
интегральной энергии в импульсе. 

В работах [7]–[9] определены закономерно-
сти влияния частоты следования разрядных им-
пульсов на структуру углеродных покрытий. По-
казано, что с увеличением частоты импульсов от 
3 Гц до 20 Гц имеет место уменьшение размера, 
увеличение количества и степени упорядочения 
Csp2-кластеров, возрастание твердости и внут-
ренних напряжений в покрытии, а также сниже-
ние ширины запрещенной зоны покрытий от 
1,35 эВ до 0,9 эВ. При толщине 80–106 нм и час-
тоте импульсов разряда 3 Гц углеродное покры-
тие имеет максимальное содержание Сsp3 связей, 
характеризуется высокими механическими и оп-
тическими свойствами. 

Данные закономерности проявляются при 
осаждении однокомпонентных покрытий и при 
их легировании. Как правило, влияние частоты 
следования импульсов на свойства покрытий 
имеет немонотонный характер. Так при нанесе-
нии покрытий в среде молекулярного азота их 
твердость незначительно уменьшается с повы-
шением частоты от 3 до 10 Гц, а затем возрастает 
на 16% с увеличением частоты до 20 Гц. При 
этом ширина оптической запрещенной зоны та-
ких покрытий снижается незначительно с 0,85 эВ 
(3 Гц) до 0,71 эВ (20 Гц). Установлено, что при 
ионном легировании углеродного слоя при час-
тоте импульсов 10 Гц относительное содержание 
С-N связей максимально и значительно превы-
шает число связей при легировании покрытия 
путем напуска в камеру молекулярного азота. 
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Значительное влияние на фазовый состав 
покрытий и их свойства оказывают геометриче-
ские параметры нанесения. Так, в [10] установ-
лено, что при увеличении расстояния между ис-
точником генерации углеродной плазмы и под-
ложкой происходит увеличение числа sp2 гибри-
дизированных атомов углерода, монотонное 
снижение твердости и модуля упругости покры-
тий, что в значительной степени определяется 
изменением энергии ионов и снижением плотно-
сти углеродного потока при его транспортировке 
от катода к подложке. При осаждении потока 
ионов углерода, имеющих практически одинако-
вую энергию и различную плотность, что дости-
гается изменением ориентации поверхности под-
ложки относительно осаждаемого потока, уста-
новлено немонотонное изменение твердости и 
модуля упругости, показателя преломления по-
крытий от угла падения углеродного потока 
(твердость и модуль упругости при угле падения 
15°, а показатель преломления при 45° имеет 
максимальное значение) [11], [12]. 

 
2 Особенности формирования, фазовый 

состав и свойства композиционных углерод-
ных покрытий 

Представленные на рисунке 1.1 схемы уста-
новок позволяют осаждать композиционные уг-
леродные покрытия практически любого хими-
ческого состава с различной концентрацией ин-
гредиентов и при заданном распределении их по 
толщине слоя. Изменяя при этом степень иони-
зации и плотность потока осаждаемых атомов, 
температуру поверхности подложки, проведя 
дополнительную ионную обработку, предостав-
ляется возможность инициирования на стадии 
осаждения протекание различных химических и 
физических (диффузии, структурообразования, 
фазовые превращения и другие) процессов. Ана-
лиз основных протекающих процессов достаточ-
но подробно рассмотрен в работах [13], [14]. При 
легировании УП металлами их влияние на струк-
туру и свойства определяется, прежде всего, ре-
акционной активностью по отношению к углеро-
ду, способностью металлов образовывать с угле-
родом химические соединения. При этом, в зави-
симости от условий и режимов осаждения, при-
роды и концентрации, металл в объёме углерод-
ного покрытия может находиться, кроме химиче-
ского соединения, также в виде самостоятельной 
фазы, либо в твердом растворе [13]–[15].  

В числе наиболее перспективных для прак-
тического применения УП, легированных хими-
чески активными металлами, кроме детально 
изученных покрытий а-C:Ti, следует отметить 
композиционные покрытия а-C:Si и а-C:B. При 
введении Si в структуру покрытия происходит 
образование карбида и оксида кремния (SiC и 
SiOx), и с ростом концентрации кремния уста-
новлено увеличение содержания более твердой 

sp3 фазы. При осаждении таких покрытий имеет 
место замещение атомами кремния атомов угле-
рода преимущественно в sp2 кластерах [16]–[18]. 
Легирование а-С покрытий бором приводит к 
образованию в покрытии карбидов и оксида бора 
либо выделению его в виде отдельной фазы. При 
концентрации бора меньше 17 масс. % установ-
лено высокое содержание атомов углерода с sp3 
гибридизацией связей, с ростом концентрации 
бора происходит уменьшение отношения фаз 
Csp3 / Csp2 . Покрытия характеризуются низкими 
значениями коэффициентов трения (0,12…0,15) 
и износа контртела [19]–[21].  

Введение в состав УП инертных металлов 
сопровождается выделением его в виде само-
стоятельной фазы, дисперсность которой зависит 
от природы металла, его концентрации и условий 
осаждения. При этом проявляется его активное 
влияние на фазовый состав углеродной матрицы, 
заключающееся, как правило, в ее графитизации. 
Такие покрытия имеют достаточно низкий уро-
вень внутренних механических напряжений. На 
примере УП, легированных медью и серебром, 
показана высокая эффективность их применения 
в узлах трения в качестве не только антифрикци-
онных, но и электротехнических слоев [22]–[24]. 

Одним из наиболее эффективных техноло-
гических приемов повышения механических 
свойств УП является их многокомпонентное ле-
гирование, в частности металлами и азотом [25], 
[26]. Отметим, что при легировании УП молеку-
лярным азотом снижается размер углеродных 
Csp2 кластеров, уровень внутренних механиче-
ских напряжений, повышается износостойкость 
контртела в сравнении с однокомпонентными а-
С покрытиями. При их обработке в процессе 
осаждения ионами азота установлено преимуще-
ственное образование соединений азота с атома-
ми углерода с sp2-гибридизацией связей, концен-
трация которых в значительной степени зависит 
от частоты импульсов разряда, плотности потока 
ионов азота [27]. При осаждении покрытий а-
C:Ме:N протекающие физико-химические про-
цессы значительно усложняются. Химически 
активные металлы в таких слоях образуют не 
только карбиды, но нитриды, карбонитриды, 
оказывают более сложное влияние на дисперс-
ность размеров Csp2 кластеров [7], [27]–[29]. 

Перспективным является и комплексное ле-
гирование УП металлами различной природы. 
Так, при осаждении a-C:(Ni+Cr) покрытий уста-
новлен эффект неаддитивного влияния концен-
трации легирующих элементов на структуру, 
отношение Сsp3 / Сsp2 и механические свойства, 
обусловленные образованием в покрытии дис-
персных фаз сложного состава на основе карбида 
хрома и интерметаллических соединений [30].  
В целом это технологическое направление не-
достаточно разработано, и при оптимальном под-
боре ингредиентов, проявляющих комплексное 
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каталитическое влияние на процессы образова-
ния Сsp3 фаз, возможно существенное повыше-
ние служебных свойств УП. 

 
3 Влияние термообработки на свойства 

композиционных углеродных покрытий 
Нагрев легированных УП вследствие более 

интенсивного протекания процессов межфазной 
диффузии, релаксации внутренних механических 
напряжений, активации фазовых и структурных 
превращений является эффективным технологи-
ческим приемом изменения физико-химических, 
механических свойств [6], [7], [31]. Особенно 
значительное влияние нагрева проявляется при 
обработке слоистых композиционных УП. Ха-
рактер протекающих процессов, а, следователь-
но, и степень изменения структуры и свойств 
определяются условиями термообработки, хими-
ческим составом покрытия. Так, установлено, 
что отжиг покрытий на воздухе практически все-
гда сопровождается монотонным при повыше-
нии температуры снижением доли sp3 гибриди-
зированных атомов углерода, твердости. При 
термообработке УП, легированных карбидообра-
зующими металлами, температурная зависи-
мость внутренних напряжений имеет экстре-
мальный характер: при нагреве до 300 С имеет 
место их снижение и при дальнейшем повыше-
нии температуры значение напряжений возрас-
тет вследствие интенсификации процесса обра-
зования карбидов [32]. Следует отметить, что 
значительное влияние на структуру и свойства 
композиционных покрытий при таких условиях 
нагрева оказывают процессы окисления. Значи-
тельную роль эти процессы оказывают, напри-
мер, при термообработке композиционных  
a-С:Al покрытий [26].  

При термообработке покрытий в вакууме 
характер протекающих изменений иной. На при-
мере (TiN:Al) / а-С, (CrN:Al) / а-C покрытий по-
казано, что после термообработки в вакууме при 
400° С имеет место формирование более одно-
родной структуры, повышение твердости, сни-
жение модуля упругости в сравнении с не ото-
жжёнными покрытиями [7], [30]. 

Главная проблема импульсного вакуумно-
дугового испарения графитового катода – это 
образование при испарении катода «капельной 
фазы» (макрочастиц). При испарении графита из 
катодного пятна, помимо ионов углерода, выле-
тают микроскопические осколки горячего графи-
та (от долей микрометра до десятков микромет-
ров). Следовательно, необходим поиск решений. 
Одним из наиболее простых и технологических 
является использование сепаратора потока, кото-
рый отклоняет поток ионов углерода, направляя 
их на подложку. Тяжелые нейтральные макро-
частицы и осколки графита не взаимодействуют 
с магнитным полем, летят по прямой и оседают 
на стенках фильтра, не попадая на изделие.  

Как показано в работах [33], [34], использование 
сепарации импульсного потока углеродной 
плазмы является технологически приемом, по-
зволяющим получить твердые, атомарно-гладкие 
и однородные покрытия. 
 

Заключение 
Проведен анализ основных технологиче-

ских приемов регулирования структуры и 
свойств композиционных углеродных покрытий. 
Рассмотрены основные схемы установок, реали-
зующих различные варианты нанесения компо-
зиционных углеродных покрытий. Обобщены 
закономерности влияния напряжения разряда, 
формы, длительности и частоты импульсов раз-
ряда при генерации углеродной плазмы на фазо-
вый состав и свойства углеродных покрытий. 
Проанализированы основные особенности фор-
мирования, фазовый состав и свойства углерод-
ных покрытий, легированных карбидообразую-
щими и инертными по отношению к углероду 
металлами. Отмечена высокая перспективность 
многокомпонентного легирования углеродных 
покрытий с целью достижения оптимального 
сочетания механических свойств. Проведена 
оценка влияния условий и режима термообра-
ботки композиционных покрытий на их фазовый 
состав и свойства.  
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