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Введение 
Начало термодинамике чёрных дыр было 

положено в ныне классических работах Бекен-
стайна и Хокинга [1], [2]. Термодинамическое 
изучение чёрных дыр в пространстве анти-де-
Ситтера (АдС-пространство), начатое в пионер-
ской работе Хокинга и Пэйджа [3], было обоб-
щено на случай наличия электрического заряда в 
работе [4], где авторы обнаружили аналогию 
между фазовыми диаграммами чёрных дыр и 
ван-дер-ваальсовской жидкости. Поэтому в по-
следнее десятилетие делается акцент на возмож-
ность проведения сравнительного анализа пове-
дения чёрных дыр и реальных жидкостей [5], [6] 
также в рамках процесса Джоуля – Томсона [7].  
В данной работе мы рассмотрим и сравним джо-
уль-томсоновское расширение (или процесс 
Джоуля – Томсона) Керровской и заряженной 

АдС чёрных дыр и двухпараметрических неиде-
альных жидкостей в модели Редлиха – Квонга, 
наиболее качественно описывающей данный про-
цесс в классических макросистемах [8], а также в 
моделях Бертло, Дитеричи I, Дитеричи II. 

Суть процесса Джоуля – Томсона заключа-
ется в следующем: макросистема изоэнтальпиче-
ски при ,H = Const  из области высокого давле-
ния переходит в область более низкого давления, 
что сопровождается изменением её температуры. 
При понижении температуры (охлаждении) эф-
фект Джоуля – Томсона считается положитель-
ным, при повышении температуры (нагревании) – 
отрицательным. Производная, характеризующая 
процесс представима в виде [7] 
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где параметры процесса µ и λ  имеют знак, сов-
падающий со знаком эффекта, в данном случае, 
дифференциального.  

Области положительного и отрицательного 
эффекта Джоуля – Томсона разделяются инвер-
сионной кривой, удовлетворяющей условию 
λ 0,  при этом полагается, что .iT T  

 
1 Джоуль-томсоновское расширение Кер-

ровской АдС чёрной дыры 
Вначале кратко коснёмся характеристик 

Керровской АдС чёрной дыры и основных её 
термодинамических свойств. Используем тради-
ционную для теоретической астрофизики рацио-
нальную систему единиц с 1.BG k c     

Керровское приближение учитывает враще-
ние чёрной дыры, что приводит к более сложной 
геометрии макросистемы, и в этом случае:  
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Здесь M – масса, допускающая интерпретацию в 
терминах энтальпии [9]; J– момент инерции. Ес-
ли учесть энтропию S и давление P, то  
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Первый закон термодинамики имеет вид 
,dM TdS VdP dJ    что приводит к следую-

щим соотношениям для температуры T, объёма V 
и угловой скорости   
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При постоянной энтальпии и моменте инер-
ции 0 :dM dJ   TdS VdP  . 

Поэтому параметр процесса   и давление 

приобретают вид 
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Совместное использование выражений 
(1.1)–(1.4), а также (1.5), (1.6) при выполнении 
условия (0.1) приводит к сложной связи  
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допускающей, однако, численный анализ, позво-
ляющий получить графики кривых инверсии и 
изоэнтальп, приведенные на рисунке 1.1 (а, б).  

Следует отметить, что этот результат очень 
хорошо согласуется с работой [5]. 

Области охлаждения и нагревания неслож-
но идентифицировать по знаку параметра µ из 
(0.1), очевидному из графического поведения 
изоэнтальп.
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Рисунок 1.1 – а) семейство кривых инверсии для Керровской АдС чёрной дыры,  
параметризованное моментом инерции J; 

б) кривая инверсии для Керровской АдС чёрной дыры с J = 1, областями положительного (охлаждение) 
и отрицательного (нагревание) эффекта Джоуля – Томсона и изоэнтальпами 
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2 Джоуль-томсоновское расширение  
заряженной АдС чёрной дыры 

Пространственно-временной интервал в 
этом случае определяется как  

   2 2 1 2 2 2 ,ds f r dt f r dr r d      

где 2 2 2 2sin ( )d d d       и функция  f r  
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Масса чёрной дыры при этом оказывается 
равной   
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и в данном случае также сопоставляется с эн-
тальпией [9].  

Подробный анализ процесса Джоуля –Том-
сона в заряженных АдС чёрных дырах проведен 
в работе [10], подтверждающей результаты, по-
лученные в [6]. По этой причине здесь приведём 
лишь окончательное выражение для температу-
ры инверсии, параметризованное зарядом  
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Используя (2.1) и (2.3), получаем оконча-
тельный вид кривых инверсии в TP-плоскости с 
зарядовой параметризацией. Семейство кривых 
инверсии приведено на рисунке 2.1 (а). Поведе-
ние изоэнтальп, следующее из (2.2) демонстри-
руется на рисунке 2.1 (б). 

Из рисунка 2.1 (б) видно, что область поло-
жительного эффекта находится над кривыми 
инверсии для любого заряда Q, что также следу-
ет из вида изоэнтальп. 
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Рисунок 2.1 – а) семейство кривых инверсии для заряженной АдС чёрной дыры,  
параметризованное зарядом Q; 

б) кривая инверсии для заряженной АдС чёрной дыры с Q = 5, областями положительного (охлаждение) 
и отрицательного (нагревание) эффекта Джоуля – Томсона и двумя изоэнтальпами 

 
3 Джоуль-томсоновское расширение 

жидкости Редлиха – Квонга 
Стандартное уравнение состояния Редлиха – 

Квонга, например [10], [11] может быть записано 
в виде 
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P
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                (3.1) 

при условии введения параметра υ = / ,V N  где  
V – объём, N – постоянное число частиц, P – дав-
ление, T – температура, Bk  – постоянная Больц-

мана, а параметры сил парного межмолекулярно-
го отталкивания и притяжения заданы заменами 

/ ,b b N  2/ .a a N  
Уравнение (3.1) и определение (0.1) дают 

явный вид параметра λ  
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Из (3.2) следует выражение для ,iT  которое 

совместно с (3.1) определяет систему уравнений 
для построения кривой инверсии  
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В свою очередь, формула (3.2) по очевид-
ному асимптотическому поведению λ 0Т   

позволяет выделить области положительного  
и отрицательного эффекта – охлаждения и  
нагревания соответственно, что позволяет не 
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использовать явный вид графического поведения 
изоэнтальпических кривых. Уравнения (18) так-
же определяют физическую область неком-
плексных и неотрицательных температур в ТР-
плоскости. Вышесказанное в случае фиксации 
параметров 1,Bk a b    по аналогии с [5] и [6], 

проиллюстрировано на рисунке 3.1 (а).  
Также следует отметить, что приведенная 

форма уравнения Редлиха – Квонга, учитываю-
щая значения критических параметров  
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где 3ξ 2 1 0,259921 0,260,     ранее изуча-

лась в рамках процесса Джоуля – Томсона в уже 
вышеупомянутой работе [11]. В этом случае 

система уравнений для инверсионной кривой 
имеет вид:  
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Приведенная кривая инверсии, следующая 
из (3.4) изображена на рисунке 3.1 (б). 

Критерий выделения областей нагревания и 
охлаждения и в этом случае тот же , 0r T   и 

также не требует явного вида изоэнтальпических 
кривых.  

 

  
а) с нормировкой 1;Ba b k     б) приведенная форма 

 

Рисунок 3.1 – Кривая инверсии для жидкости Редлиха – Квонга 
 

4 Джоуль-томсоновское расширение жид-
кости Бертло 

Уравнение состояния Бертло [7] также мо-
жет быть записано в виде с использованием 
υ = /V N  
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Уравнение (4.1) и определение (0.1) дают 
явный вид λ  
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Подстановка υ  в (4.1) приводит к уравнению  
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Решения уравнения (4.3) задают вид верх-
ней и нижней кривых инверсии  
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а также позволяют выделить физическую об-
ласть некомплексных и неотрицательных темпе-
ратур в ТР-плоскости, что изображено на рисун-
ке 4.1 (а). Физическое и максимальное значения 
давления следующие 

3
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При этом предельные значения температур 
также становятся известны:  
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Ранее приведенная форма уравнения Бертло, 
полученная с использованием критических па-
раметров  
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изучалась в рамках процесса Джоуля – Томсона 

в работе [12]. Полученная в этой работе приве-
денная кривая инверсии изображена на рисунке 
4.1 (б). 

В этом случае верхние и нижние кривые 
инверсии имеют вид  
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Идентификация на графиках областей на-
гревания и охлаждения в обоих случаях не тре-
бует явного вида изоэнтальпических кривых,  
а очевидна из (4.2), так как  0T   

 

  
а) с нормировкой 1;Ba b k    б) приведенная форма 

  

Рисунок 4.1 – Нижняя (пунктирная линия) и верхняя (непрерывная линия) 
кривые инверсии для жидкости Бертло  

 
5 Джоуль-томсоновское расширение 

жидкости Дитеричи I  
Уравнение состояния Дитеричи I записыва-

ется как 

exp .
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              (5.1) 

В этом случае уравнение (5.1) и определе-
ние (0.1) дают явный вид параметра процесса  
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который при условии инверсии λ 0  и iT T  

приводит к связи 
υ2
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B i
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b
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                (5.2) 

Использование (5.1) и (5.2) позволяет полу-
чить формулу для кривой инверсии  
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которая представлена на рисунке 5.1 (а) с указа-
нием областей охлаждения и нагревания. 

 

  
а) с нормировкой 1;Ba b k    б) приведенная форма 

 

Рисунок 5.1 – Кривая инверсии для жидкости Дитеричи I 
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Ранее в работе [12] была получена кривая 
инверсии для уравнения Дитеричи I в терминах 
приведенных переменных, изображённая на  
рисунке 5.1 (б). В этом случае  
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6 Джоуль-томсоновское расширение 

жидкости Дитеричи II  
Уравнение состояния Дитеричи II представ-

ляется в виде 

5/3
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υ υ
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P
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

                    (6.1) 

Уравнение состояния (6.1) и определение 
(0.1) в этом случае дают следующий вид пара-
метра процесса 
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Пара уравнения из (6.2) не позволяет полу-
чить явное аналитическое выражение ( )i iT T P  

для кривой инверсии, но ее графический вид, 
представленный на рисунке 6.1 (a), легко опре-
делить численными методами. В работе [13] бы-
ла получена инверсионная кривая для уравнения 
Дитеричи II в терминах приведенных перемен-
ных, изображённая на рисунке 6.1 (б). В этом 
случае система уравнений для кривой инверсии 
имеет следующий вид:  
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а) с нормировкой 1;Ba b k    б) приведенная форма 

 

Рисунок 6.1 – Кривая инверсии для жидкости Дитеричи II 
 

7 Сходства и различия 
Предполагая физическую тождественность 

ТР-плоскостей для рассматриваемых макросис-
тем при условии использования рациональной 
системы единиц и нормировки 1,Ba b k    

укажем на их выявленные сходства и различия 
при джоуль-томсоновском расширении. 

Сходства: 
1. Термодинамические уравнения состояния 

Керровских и заряженных чёрных дыр, как и 
двухпараметрических неидеальных жидкостей, 
допускают физически корректный анализ в рам-
ках джоуль-томсоновского расширения, тем са-
мым, делая возможной реализацию процесса в 
данных макросистемах. 

2. Для всех рассмотренных макросистем 
кривые инверсии знака дифференциального эф-
фекта Джоуля – Томсона построены в ТР-плос-
кости. 

3. Для всех рассмотренных макросистем оп-
ределены и указаны на графиках области  

положительного и отрицательного эффекта на 
основе поведения параметров процесса λ или µ. 

4. Поведение кривых инверсии чёрных дыр 
допускает сравнение с поведением только «ниж-
них» кривых инверсии неидеальных газов. 

5. Влияние параметризации зарядом или 
моментом инерции на вид кривых инверсии АдС 
чёрных дыр позволяет сделать вывод о наличии 
некоторого заряда или момента инерции, при 
котором их кривые инверсии имеют точку каса-
ния А с кривыми инверсии жидкостей. Так, на-
пример, в работе [10] было показано, что для 
заряженных АдС чёрных дыр и жидкости Редли-
ха – Квонга данной ситуации соответствует за-
ряд Q = 2,75. Координаты точки касания:  
РА = 0,28; ТА = 0,43. 

6. Так как область положительного эффекта 
у чёрных дыр располагается над кривой инвер-
сии, то при прохождении кривой ниже точки 
касания эта область полностью содержит область 
положительного эффекта неидеальной жидкости, 
что позволяет в этом случае использовать 
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«жидкостную» терминологию применительно к 
чёрным дырам. 

7. Наличие точки касания с нижней стороны 
кривой инверсии говорит о правомерности ис-
пользования термина «жидкость» для вещества в 
модели Редлиха – Квонга и других, так как имен-
но нижняя часть соответствует жидкой фазе со-
стояния.  

Различия: 
1. Область положительного эффекта чёрных 

дыр не имеет ограничения сверху. 
2. У чёрных дыр в ТР-плоскости не возни-

кает нефизическая область комплексных темпе-
ратур. 

3. Область положительного эффекта для не-
идеальных жидкостей в ТР-плоскости фиксиро-
вана, в то время как область положительного 
эффекта для чёрных дыр увеличивается с 
уменьшением заряда или момента инерции. 

 
Заключение 
В работе рассмотрено джоуль-томсоновское 

расширение Керровской и заряженной черных 
дыр в АдС-пространстве и ряда двухпараметри-
ческих неидеальных жидкостей. Масса черной 
дыры в АдС пространстве отождествлялась с 
энтальпией и считалась постоянной. Во всех 
случаях получены кривые инверсии знака диф-
ференциального эффекта Джоуля – Томсона и 
определены области охлаждения и нагревания, 
то есть показано, что на уровне современных 
термодинамических представлений в рассматри-
ваемых макросистемах реализация процесса 
Джоуля – Томсона физически допустима. Прове-
ден возможный сравнительный анализ. 
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