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Аннотация. Работа посвящена разработке метамодели процесса лазерного раскалывания кристаллического кварца, 
включающей моделирование и оптимизацию. На основе конечно-элементной модели с использованием языка  
программирования APDL определены температурные поля и поля термоупругих напряжений, которые формируются 
в монокристаллической кварцевой пластине в результате последовательного лазерного нагрева и воздействия 
хладагента для трех различных вариантов: I – анализ среза ZY при перемещении лазерного пучка в направлении оси X; 
II – анализ среза YX при перемещении лазерного пучка в направлении оси X; III – анализ среза XY при перемещении 
лазерного пучка в направлении оси Z. С использованием центрального композиционного плана проведен численный 
эксперимент, в котором в качестве факторов были использованы скорость обработки, геометрические параметры 
эллиптического лазерного пучка, мощность СО2-лазера и толщина кварцевой пластины. Согласно плана численного 
эксперимента выполнены расчеты для 27 комбинаций факторов с определением значений максимальных температур 
Т1, Т2, Т3 для трех вариантов обработки квадратной кварцевой пластины и трех соответствующих значений максимальных 
напряжений растяжения S1, S2, S3, действующих перпендикулярно фронту лазерно-индуцированных трещин. Выявлены 
эффективные архитектуры искусственных нейронных сетей для определения максимальных температур и максимальных 
термоупругих напряжений в зоне лазерной обработки кристаллического кварца с использованием TensorFlow.  
Построены нейро-нечеткие модели в системе ANFIS, проведено сравнение нейросетевых и нейро-нечетких моделей. 
Определены эффективные входные параметры лазерного раскалывания кристаллического кварца на основе 
оптимизационного генетического алгоритма MOGA. 
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Abstract. The study focuses on developing a metamodel for the laser cleaving process of crystalline quartz, encompassing 
modeling and optimization. Using a finite element model implemented in the APDL programming language, temperature fields 
and thermoelastic stress fields were determined. These fields arise in a monocrystalline quartz plate due to sequential laser 
heating and coolant exposure, analyzed for three distinct variants: I – analysis of the ZY-plane cross-section with laser beam 
movement along the X-axis; II – analysis of the YX-plane cross-section with laser beam movement along the X-axis; III –  
analysis of the XY-plane cross-section with laser beam movement along the Z-axis. A central composite design was employed to 
conduct a numerical experiment, where the factors included processing speed, geometric parameters of the elliptical laser beam, 
CO2 laser power, and quartz plate thickness. According to the experimental design, calculations were performed for 27 factor 
combinations, determining the maximum temperature values (Т1, Т2, Т3) for three processing variants of a square quartz plate, 
along with three corresponding values of maximum tensile stress (S1, S2, S3) acting perpendicular to the laser-induced crack 
fronts. The optimal artificial neural network architectures were identified for predicting maximum temperatures and 
thermoelastic stresses in the laser processing zone of crystalline quartz using TensorFlow. Neuro-fuzzy models were developed 
in the ANFIS framework, followed by a comparative analysis of neural network and neuro-fuzzy approaches. Furthermore, the 
most effective input parameters for laser cleaving of crystalline quartz were determined through optimization using the MOGA. 
 
Keywords: laser cutting, Artificial Neural Networks, adaptive network-based fuzzy inference system, MOGA optimization 
genetic algorithm, ANSYS program. 
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1 Introduction  
The relevance of studying laser cleaving of 

crystalline quartz stems from increasing demands for 
precision and quality in processing brittle non-
metallic materials within microelectronics and opto-
electronics applications. Traditional machining 
methods face significant limitations, necessitating 
novel approaches to enhance the efficiency and qual-
ity of quartz cutting. Laser cleaving technology of-
fers an effective solution for brittle material process-
ing, based on generating localized thermoelastic 
stresses through combined laser irradiation and 
coolant application. The process involves material 
heating by laser radiation followed by cooling-
induced stress generation, which initiates controlled 
crack propagation. This technology provides three 
key advantages: high cutting precision, minimal 
material damage, and superior processing productiv-
ity [1]. 

Finite element modeling (FEM) has become a 
widely adopted approach for investigating laser 
cleaving processes in brittle non-metallic materials 
[2]–[5]. However, FEM implementations demand 
substantial computational resources, limiting their 
utility for real-time process analysis and parameter 
optimization. This constraint has driven growing 
interest in metamodeling techniques, which enable 
significant computational cost reduction through 

simplified yet sufficiently accurate models derived 
from FEM-generated datasets [6]. Within this para-
digm, artificial neural networks (ANNs) and adap-
tive neuro-fuzzy inference systems (ANFIS) have 
demonstrated successful applications in studying 
laser processing of brittle non-metallic materials. 
Furthermore, genetic algorithms provide an effective 
methodology for determining optimal laser process-
ing parameters [7]–[16].  

This study implements finite element modeling 
of controlled laser cleaving processes in crystalline 
quartz. The resulting simulation data was utilized to 
develop artificial neural network and neuro-fuzzy 
models, and to determine optimal parameters for 
laser-induced crack propagation in crystalline quartz 
through genetic algorithm optimization. 

 
2 Discussion 
The proposed metamodel representing the laser 

cleaving process of crystalline quartz is shown in 
Figure 2.1. 

Let us examine the key structural components 
of the metamodel. 

I. Finite Element Modeling. The simulation of 
temperature fields and thermoelastic stresses arising 
during controlled laser cleaving of crystalline quartz 
was performed using a quasi-static formulation with 
application of uncoupled thermoelasticity theory. 

 

 
 

Figure 2.1 – Metamodel of the laser cleaving process for crystalline quartz 
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           (a) Treatment configuration I           (b) Treatment configuration II          (c) Treatment configuration III 
 

Figure 2.2 – Layout diagrams of laser irradiation and refrigerant application zones in the processing plane 
 

In the finite element modeling, crystalline 
quartz was assigned the following material proper-
ties: density  = 2643 kg/m3 and specific heat capac-
ity C = 741 J/(kgK). The thermal conductivity and 
linear thermal expansion coefficients were defined 
as λ║ = 12.3 W/(mK) and ║ = 9·10-6 K-1 along the 
Z-axis (third-order symmetry axis), with perpendicu-
lar values λ┴ = 6.8 W/(mK) and ┴ = 14.8·10-6 K-1. 
The elastic stiffness constants applied in calculations 
were: С11 = 86.75·109 MPa, С12 = 5.95·109 MPa, 
С13 = 11.91·109 MPa, С14 = –17.8·109 MPa, С33 = 
= 107.2·109 MPa, and С44 = 57.8·109 MPa [5]. 

The studies were conducted on square plates 
measuring 20×20 mm, with sample thickness vary-
ing in the range of 0.5 to 2 mm. The modeling was 
performed for conditions involving laser radiation 
exposure at a wavelength of 10.6 μm.  

The modeling employed standard initial orien-
tations for the square-shaped crystalline samples. 
For each of the three cross-sections, the laser beam 
movement direction was aligned with the crystallo-
graphic axes lying within the respective processing 
plane. Notably, following the convention established 
in [17], the cross-sections were designated using 
two-letter codes indicating the crystallographic axes: 
the first letter represents the axis oriented along the 
sample’s thickness direction, while the second de-
notes the axis aligned with its length. 

The thermoelastic field calculations in the 
monocrystalline quartz plate, resulting from sequen-
tial laser heating and coolant application, were per-
formed for three distinct configurations: I – ZY-plane 
analysis with laser beam movement along the X-
axis, II – YX-plane analysis with laser beam move-
ment along the X-axis, and III – XY-plane analysis 
with laser beam movement along the Z-axis. 

Figure 2.2 illustrates the spatial arrangements 
of laser irradiation and coolant application zones 
within the processing plane for the three treatment 
configurations investigated in this study.  

The diagram is annotated as follows: (1) laser 
beam, (2) refrigerant, (3) laser-induced crack, and 
(4) quartz plate. The horizontal arrow indicates the 
direction of the sample movement relative to the 
laser beam and the refrigerant application zone. 

II – III. Experimental Design and Numerical 
Simulation. A central composite design was imple-
mented in ANSYS DesignXplorer to plan the 

numerical experiments. The following input parame-
ters were selected: P1 is the processing speed (V), P2, 
P3 are the semi-major (A) and semi-minor (B) axes 
of the elliptical laser beam, P4 is the СО2 laser 
power (P), P5 is the quartz plate thickness (H). 

In accordance with the experimental design, 
simulations were performed for 27 factor combina-
tions. The analysis determined maximum tempera-
ture values (Т1, Т2, Т3) for the three processing con-
figurations of square quartz plates described previ-
ously, along with the corresponding maximum ten-
sile stress values (S1, S2, S3) acting perpendicular to 
the laser-induced crack fronts (see Table 2.1). 

IV. Artificial Neural Network (ANN) Model-
ing. The laser processing simulation using artificial 
neural networks was implemented with the Tensor-
Flow library. The neural network implementation 
employed ReLU activation functions and mean 
squared error (MSE) as the loss metric, with model 
optimization performed using the Adam optimizer 
over 300 training epochs. The dataset incorporated 
the original 27 central composite design configura-
tions supplemented by 100 additional finite element 
simulation cases, of which 10 were reserved for test-
ing the neural network models (see Table 2.2).  

The model quality assessment used the follow-
ing performance metrics: mean absolute error 
(MAE), root mean square error (RMSE), mean abso-
lute percentage error (MAPE), and the coefficient of 
determination (R2).  

The optimal architectures for predicting maxi-
mum temperatures were achieved with a [5-50-30-6] 
neural network for Т1 and [5-40-40-6] networks for 
both Т2 and Т3. For maximum tensile stress predic-
tion (S1, S2, S3), the best-performing architectures 
selected through metric analysis were [5-20-30-6], 
[5-40-40-6], and [5-50-30-6], respectively. The 
complete evaluation results for all neural network 
models are provided in Table 2.3. 

Subsequently, a neuro-fuzzy model was devel-
oped using the ANFIS (Adaptive Neuro-Fuzzy In-
ference System) framework, i. e., a hybrid architec-
ture integrating neural networks with fuzzy logic 
principles. The optimization and training of mem-
bership functions followed standard artificial neural 
network algorithms. As detailed in [18], the ANFIS 
inference system structure comprises five distinct 
layers. 
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Table 2.1 – Experimental design and computational results  

N 
P1 

(V, m/s) 
P2 

(A, m) 
P3 

(B, m) 
P4 

(P, W)
P5 

(H,m) Т1, K Т2, K Т3, K S1, МPа S2, МPа S3, МPа

1 0.015 0.002 0.0015 45 0.00125 780 787 802 66 147 65 
2 0.005 0.002 0.0015 45 0.00125 1098 1069 1101 60 141 63 
3 0.025 0.002 0.0015 45 0.00125 678 691 698 63 142 61 
4 0.015 0.001 0.0015 45 0.00125 914 930 942 55 135 57 
5 0.015 0.003 0.0015 45 0.00125 716 712 731 75 156 72 
6 0.015 0.002 0.001 45 0.00125 897 904 924 63 143 63 
7 0.015 0.002 0.002 45 0.00125 699 706 717 67 150 67 
8 0.015 0.002 0.0015 30 0.00125 618 622 632 44 121 48 
9 0.015 0.002 0.0015 60 0.00125 942 951 972 88 174 83 

10 0.015 0.002 0.0015 45 0.0005 1172 1111 1180 60 65 67 
11 0.015 0.002 0.0015 45 0.002 736 738 740 56 129 60 
12 0.005 0.001 0.001 30 0.002 1003 1001 1008 38 100 54 
13 0.025 0.001 0.001 30 0.0005 875 911 944 35 37 25 
14 0.005 0.003 0.001 30 0.0005 1350 1186 1307 114 83 118 
15 0.025 0.003 0.001 30 0.002 544 545 546 34 100 39 
16 0.005 0.001 0.002 30 0.0005 1272 1219 1200 78 57 83 
17 0.025 0.001 0.002 30 0.002 545 546 546 27 94 33 
18 0.005 0.003 0.002 30 0.002 618 612 619 47 119 56 
19 0.025 0.003 0.002 30 0.0005 623 612 633 56 58 40 
20 0.005 0.001 0.001 60 0.0005 2885 2692 2782 163 113 174 
21 0.025 0.001 0.001 60 0.002 1210 1211 1211 54 124 65 
22 0.005 0.003 0.001 60 0.002 1118 1105 1122 87 166 93 
23 0.025 0.003 0.001 60 0.0005 1204 1121 1245 106 107 76 
24 0.005 0.001 0.002 60 0.002 1220 1217 1230 67 147 76 
25 0.025 0.001 0.002 60 0.0005 968 1037 1045 73 78 53 
26 0.005 0.003 0.002 60 0.0005 2184 1935 2057 239 180 248 
27 0.025 0.003 0.002 60 0.002 617 619 620 70 143 69 

 

Table 2.2 – Test dataset 

N 
P1 

(V, m/s) 
P2 

(A, m) 
P3 

(B, m) 
P4 

(P, W)
P5 

(H,m) Т1, K Т2, K Т3, K S1, МPа S2, МPа S3, МPа

1 0.015 0.002 0.0015 45 0.00125 780 787 802 66 147 65 
2 0.005 0.002 0.0015 45 0.00125 1098 1069 1101 60 141 63 
3 0.025 0.002 0.0015 45 0.00125 678 691 698 63 142 61 
4 0.015 0.001 0.0015 45 0.00125 914 930 942 55 135 57 
5 0.015 0.003 0.0015 45 0.00125 716 712 731 75 156 72 
6 0.015 0.002 0.001 45 0.00125 897 904 924 63 143 63 
7 0.015 0.002 0.002 45 0.00125 699 706 717 67 150 67 
8 0.015 0.002 0.0015 30 0.00125 618 622 632 44 121 48 
9 0.015 0.002 0.0015 60 0.00125 942 951 972 88 174 83 

10 0.015 0.002 0.0015 45 0.0005 1172 1111 1180 60 65 67 
 

Table 2.3 – Neural network model evaluation results 
Criterion T1 T2 T3 S1 S2 S3 

RMSE 30 K 37 K 31 K 3.8МPа 4.6 МPа 7.0 МPа 
MAE 23 K 21 K 19 K 2.7 МPа 5.4 МPа 5.1 МPа 

MAPE 2.0% 1.9% 1.7% 3.6% 3.7% 7.3% 
R2 0.9846 0.9799 0.9890 0.9680 0.9849 0.8959 

 

Table 2.4 – Neuro-fuzzy model evaluation results 
Criterion T1 T2 T3 S1 S2 S3 

RMSE 66 K 53 K 66 K 9.9 МPа 11.0 МPа 8.3 МPа 
MAE 60 K 49 K 60 K 7.9 МPа 9.3 МPа 7.3 МPа 

MAPE 7.2% 5.9% 7.0% 11.2% 10.3% 11.3% 
R2 0.9490 0.9601 0.9522 0.7808 0.9222 0.8553 
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Layer 1 (adaptive) represents fuzzification. 
This initial adaptive layer handles the conversion of 
crisp input parameters х1, …, xn into fuzzy linguistic 
variables. The layer outputs are membership func-
tion values i,j, i = 1, … k, j = 1, …, n. Various mem-
bership functions (MFs) in this layer generate mem-
bership degree assessments from the input variables. 

Layer 2 (non-adaptive) represents implication. 
This layer implements fuzzy “if-then” rules, where 
each fixed node establishes both the rule content and 
its position within the fuzzy inference system. The 
neurons in this layer output firing strengths wq 
(q = 1,…, L), which quantify the truth values of each 
rule’s premise in the system’s knowledge base.  

Layer 3 (non-adaptive) represents normaliza-
tion. This layer performs normalization of rule acti-
vation weights (firing strengths). The non-adaptive 

nodes compute: 
1

,q
q n

qq

w
w

w





 where q = 1, …, L. 

Layer 4 (adaptive) represents defuzzification. 
This adaptive layer implements the fuzzy inference 
model, calculating output values q qw f  for each 

rule’s conclusion, where fq stands for input parame-
ter functions (q = 1,…, L). 

Layer 5 (non-adaptive) represents output. This 
final layer computes the system’s crisp output value 
through weighted summation of all incoming signals 

from Layer 4: 01
.

L

q qq
Y w f w


   

The training process involves simultaneous op-
timization of both premise parameters and conse-
quent parameters.  

A neuro-fuzzy inference system was developed 
to predict maximum temperatures (Т1, Т2, Т3) and 
tensile stresses (S1, S2, S3) based on five input pa-
rameters: processing speed (V), laser beam elliptical 
axes (semi-major A and semi-minor B), СО2 laser 
power (P), and quartz plate thickness (H). The sys-
tem implements Sugeno-type if-then rules with lin-
ear consequent functions, where crisp input parame-
ters are first converted into fuzzy sets through trian-
gular, trapezoidal, and Gaussian membership func-
tions during the fuzzification stage  
If Р1 is А and Р2 is В and Р3 is С and Р4 is D and Р5 is E 
then Y is out а0 + a1P1 + a2P2 + a3P3 + a4P4 + a5P5, 

where а0, a1, …, a5 signify the coefficients to be 
determined, and Y denotes either the maximum tem-
perature (T) or maximum tensile stress (S). 

The ANFIS neuro-fuzzy model was trained us-
ing dataset obtained from numerical experiments. 
A hybrid learning algorithm combining gradient 
descent and least-squares estimation was employed, 
implementing a two-phase optimization process: 
first, while keeping the premise parameters fixed, it 
adjusts the consequent parameters using the least-
squares method; then, with the consequents held 
constant, it refines the premise parameters through 
gradient descent optimization. The training protocol 

was configured with 10 epochs and a target error 
tolerance of 0. 

Table 2.4 presents the performance metrics of 
the ANFIS neuro-fuzzy model for predicting both 
maximum temperatures (Т1, Т2, Т3) and tensile 
stresses (S1, S2, S3). The developed model demon-
strates satisfactory accuracy compared to neural 
network approaches, while requiring an order of 
magnitude smaller training dataset than equivalent 
neural network models. 

V. Parameter optimization using MOGA ge-
netic algorithm. The multi-objective genetic algo-
rithm (MOGA) in ANSYS DesignXplorer was im-
plemented to optimize crystalline quartz laser cleav-
ing parameters. This optimization procedure focused 
specifically on Processing Configuration I. Notably, 
the developed algorithm provides universal capabil-
ity for selecting optimal laser processing parameters 
across all possible crystalline plane orientations. 

The optimization considered the following criteria: 
V → max, S1 → max, T ≤ 1988 K. 

The optimal parameter set was determined for 
a quartz plate with 0.001 m thickness. The optimized 
parameters are presented in Table 2.5, with corre-
sponding finite element modeling reference values 
shown in parentheses. The MOGA algorithm dem-
onstrated high fidelity, with maximum relative error 
not exceeding 5% across all response predictions. 

 

Table 2.5 – Optimization results 
 

P1 
(V, m/s)

P2 
(A, m)

P3 
(B, m)

P4 
(P, W) 

P5 
(H, m) Т1, K

S1, 
МPа

0.0053 0.0023 0.0017 58 0.001 
1381 

(1413)
102 
(98)

 
Conclusion 
This study has developed an integrated meta-

model comprising five key components: finite ele-
ment modeling (I), experimental design (II) and nu-
merical simulation (III), neural network and neuro-
fuzzy system development (IV), genetic algorithm 
optimization (V) using MOGA methodology.  

Using APDL programming language, the finite 
element model determined temperature distributions 
and thermoelastic stress fields generated in 
monocrystalline quartz plates during sequential laser 
heating and refrigerant application. The numerical 
investigation analyzed how four key parameters, 
namely processing speed, elliptical laser beam ge-
ometry, CO₂ laser power, and plate thickness, affect 
peak temperatures and tensile stresses generated 
during laser cleaving of crystalline quartz, following 
a central composite design framework for the com-
putational experiment. The study identified optimal 
artificial neural network architectures for predicting 
maximum temperatures and stresses under specified 
input parameters. While ANN models demonstrated 
high accuracy, the developed ANFIS neuro-fuzzy 
systems, combining neural networks with fuzzy logic, 
achieved satisfactory precision with significantly 
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smaller training datasets. Parameter optimization 
using the MOGA genetic algorithm in Design-
Xplorer yielded effective processing conditions, de-
livering results with high fidelity (<5% error margin).  

The developed metamodel offers an effective 
practical solution for improving crystalline quartz 
laser cleaving quality, significantly reducing both 
time expenditures and computational resource re-
quirements compared to direct numerical simula-
tions or costly physical experiments. Its key advan-
tage lies in genetic algorithm-based process optimi-
zation that automatically identifies optimal laser 
processing parameters (power, speed, beam focus, 
and plate thickness) to produce clean fracture sur-
faces with minimal defects. By combining finite 
element analysis, neural networks, and neuro-fuzzy 
systems, the model enables rapid high-accuracy 
process simulation while substantially reducing the 
need for expensive equipment trial runs on physical 
equipment. 

The proposed metamodel serves as an effective 
tool for enhancing efficiency, reducing production 
costs, and ensuring consistent high quality in indus-
trial laser cleaving of quartz.  
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