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AnnoTtamusi. PaboTa nocssimena pa3paboTke MeTaMOJENIN MPOIEcca JIa3epHOr0 PAaCKaNbIBAHUS KPHUCTANIMYECKOTO KBaplia,
BKJIIOYAIOIIEH MOJENMpOBaHUE U ONTHMH3aluio. Ha OCHOBE KOHEUHO-2I€MEHTHOW MOJENIM C HCIOJIB30BAHHEM SI3BIKA
nporpammupoBanuss APDL onpeneneHbl TeMiepaTypHbie TOJIS M HOJIS TEPMOYIPYTUX HAaNpSDKEHUH, KOTOpble (POPMUPYIOTCS
B MOHOKPHCTAJUIMYECKOH KBapIEBOH IUIACTHHE B pE3yJbTaTe IOCIEOBATENbHOIO JA3epPHOTO HArpeBa M BO3JCHCTBHSA
XJIaJIareHTa JUisl TpeX passInuHbIX BapuaHToB: | — aHanu3 cpesa ZY npu rnepeMeleHny Ja3epHoro Myyka B HalpaBJIeHUH OCH X;
II — ananu3 cpesa YX npu nepeMeleHHH J1a3epHOro nydka B HanpaBieHuu ocu JX; III — ananus cpesa XY npu nepemenieHun
JIa3epHOro ITy4Ka B HampasieHnH ocH Z. C HCIONB30BaHUEM LEHTPAIBLHOIO KOMIIO3HIIMOHHOTO IUIaHA HMPOBEJECH YHCIICHHBII
SKCIIEPUMEHT, B KOTOPOM B KayecTBe (paKTOPOB OBUIM HCIIOJIB30BAaHBI CKOPOCTh OOPaOOTKM, I€OMETPHYECKHE MapameTpbl
9IUIHITHYECKOTO JIa3epHOro Imyuka, MomHocTh CO,-asepa U TONMIMHA KBapleBoH IIacTuHbL COrnacHO IIaHa YHCIEHHOTO
9KCHEPUMEHTa BBIIIOJIHEHB! PacdeThl Julsl 27 KOMOUHAINK (haKTOPOB C ONpENesICHHEM 3HaYeHHIl MaKCHMAIBHBIX TeMIIeparyp
T\, T», T5 nns Tpex BapuaHTOB 00pabOTKM KBaAPATHOM KBapLEBOH INIACTUHBI U TPEX COOTBETCTBYIOIIUX 3HAYEHUI MaKCUMAaJIbHBIX
HAIPsDKEHHH PacTshKeHus Sy, Ss, S3, ASHCTBYIOIHX HEePHEHINKYISIPHO (POHTY JIa3epHO-HHAYHPOBAHHBIX TPEIHH. BrIsIBIeHbI
3 (heKTUBHBIE apXUTEKTYPHI HCKYCCTBEHHBIX HEHPOHHBIX CETeH ISl ONpeJIeIeHIsT MaKCUMAIBbHBIX TeMIepaTyp ¥ MaKCHMaIbHBIX
TEPMOYNPYIHX HANPSHKEHHI B 30HE Ja3epHOW OOpabOTKM KPHCTAIUIMYECKOro KBapua ¢ wucmojib3oBanueM TensorFlow.
IocTpoens! Heiipo-HeueTkue Moaenu B cucteme ANFIS, npoBeneHo cpaBHEHHE HEHPOCETEBBIX M HEHPO-HEUETKUX MOJEINEH.
Ompenenensl  d(pGeKTHBHBIE BXOAHBIE IAapaMeTPhl Ja3epHOTO PACKANBIBAHUS KPHCTAUIMYECKOr0 KBaplla Ha OCHOBE
ONTHUMHU3ALMOHHOr0 reHeTnyeckoro anroputma MOGA.

KiloueBble cll0Ba: jazepnas peska; UCKYCCMGEHHble HElUPOHHble Cemu; UCKYCCMBEeHHAA HeUpOHHAs Cenlb, OCHOBAHHAA
Ha HeuemKoU cucmeme 6b1600a; ONMuMu3ayuoHHwlll 2enemuyeckuti anzopumm MOGA; npoepamma ANSYS.

Jast nutupoBanus: Huxumiox, FO.B. ViccnenoBanue U ONTUMU3ALHS Ja3epPHOTO PACKAIBIBAHMS KPUCTAUIMIECKOTO KBapna ¢
HCIIONB30BAHHEM T'€HETHYECKOr0 alnropuT™Ma, HefipoceTeBbIX M Heiipo-HeueTkux mozeneit / 10.B. HukuTtiok, JI.H. Mapuenko,
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Abstract. The study focuses on developing a metamodel for the laser cleaving process of crystalline quartz, encompassing
modeling and optimization. Using a finite element model implemented in the APDL programming language, temperature fields
and thermoelastic stress fields were determined. These fields arise in a monocrystalline quartz plate due to sequential laser
heating and coolant exposure, analyzed for three distinct variants: I — analysis of the ZY-plane cross-section with laser beam
movement along the X-axis; II — analysis of the YX-plane cross-section with laser beam movement along the X-axis; III —
analysis of the XY-plane cross-section with laser beam movement along the Z-axis. A central composite design was employed to
conduct a numerical experiment, where the factors included processing speed, geometric parameters of the elliptical laser beam,
CO; laser power, and quartz plate thickness. According to the experimental design, calculations were performed for 27 factor
combinations, determining the maximum temperature values (7}, 75, T5) for three processing variants of a square quartz plate,
along with three corresponding values of maximum tensile stress (S), Sz, S3) acting perpendicular to the laser-induced crack
fronts. The optimal artificial neural network architectures were identified for predicting maximum temperatures and
thermoelastic stresses in the laser processing zone of crystalline quartz using TensorFlow. Neuro-fuzzy models were developed
in the ANFIS framework, followed by a comparative analysis of neural network and neuro-fuzzy approaches. Furthermore, the
most effective input parameters for laser cleaving of crystalline quartz were determined through optimization using the MOGA.

Keywords: laser cutting, Artificial Neural Networks, adaptive network-based fuzzy inference system, MOGA optimization
genetic algorithm, ANSYS program.
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1 Introduction

The relevance of studying laser cleaving of
crystalline quartz stems from increasing demands for
precision and quality in processing brittle non-
metallic materials within microelectronics and opto-
electronics applications. Traditional machining
methods face significant limitations, necessitating
novel approaches to enhance the efficiency and qual-
ity of quartz cutting. Laser cleaving technology of-
fers an effective solution for brittle material process-
ing, based on generating localized thermoelastic
stresses through combined laser irradiation and
coolant application. The process involves material
heating by laser radiation followed by cooling-
induced stress generation, which initiates controlled
crack propagation. This technology provides three
key advantages: high cutting precision, minimal
material damage, and superior processing productiv-
ity [1].

Finite element modeling (FEM) has become a
widely adopted approach for investigating laser
cleaving processes in brittle non-metallic materials
[2]-[5]. However, FEM implementations demand
substantial computational resources, limiting their
utility for real-time process analysis and parameter
optimization. This constraint has driven growing
interest in metamodeling techniques, which enable
significant computational cost reduction through

simplified yet sufficiently accurate models derived
from FEM-generated datasets [6]. Within this para-
digm, artificial neural networks (ANNs) and adap-
tive neuro-fuzzy inference systems (ANFIS) have
demonstrated successful applications in studying
laser processing of brittle non-metallic materials.
Furthermore, genetic algorithms provide an effective
methodology for determining optimal laser process-
ing parameters [7]-[16].

This study implements finite element modeling
of controlled laser cleaving processes in crystalline
quartz. The resulting simulation data was utilized to
develop artificial neural network and neuro-fuzzy
models, and to determine optimal parameters for
laser-induced crack propagation in crystalline quartz
through genetic algorithm optimization.

2 Discussion

The proposed metamodel representing the laser
cleaving process of crystalline quartz is shown in
Figure 2.1.

Let us examine the key structural components
of the metamodel.

L. Finite Element Modeling. The simulation of
temperature fields and thermoelastic stresses arising
during controlled laser cleaving of crystalline quartz
was performed using a quasi-static formulation with
application of uncoupled thermoelasticity theory.
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Figure 2.1 — Metamodel of the laser cleaving process for crystalline quartz
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Figure 2.2 — Layout diagrams of laser irradiation and refrigerant application zones in the processing plane

In the finite element modeling, crystalline
quartz was assigned the following material proper-
ties: density p = 2643 kg/m’ and specific heat capac-
ity C=741 J/(kg:K). The thermal conductivity and
linear thermal expansion coefficients were defined
as A| = 12.3 W/(mK) and o = 9:10° K" along the
Z-axis (third-order symmetry axis), with perpendicu-
lar values AL = 6.8 W/(m-K) and o= 14.8-10° K.
The elastic stiffness constants applied in calculations
were: Cy; =86.75:10° MPa, C),=5.95-10° MPa,
Ci3=11.91-10°MPa, Cj4 = ~17.8:10° MPa, C3; =
=107.2:10° MPa, and Cy = 57.8-10° MPa [5].

The studies were conducted on square plates
measuring 20x20 mm, with sample thickness vary-
ing in the range of 0.5 to 2 mm. The modeling was
performed for conditions involving laser radiation
exposure at a wavelength of 10.6 um.

The modeling employed standard initial orien-
tations for the square-shaped crystalline samples.
For each of the three cross-sections, the laser beam
movement direction was aligned with the crystallo-
graphic axes lying within the respective processing
plane. Notably, following the convention established
n [17], the cross-sections were designated using
two-letter codes indicating the crystallographic axes:
the first letter represents the axis oriented along the
sample’s thickness direction, while the second de-
notes the axis aligned with its length.

The thermoelastic field calculations in the
monocrystalline quartz plate, resulting from sequen-
tial laser heating and coolant application, were per-
formed for three distinct configurations: I — ZY-plane
analysis with laser beam movement along the X-
axis, I — YX-plane analysis with laser beam move-
ment along the X-axis, and III — XY-plane analysis
with laser beam movement along the Z-axis.

Figure 2.2 illustrates the spatial arrangements
of laser irradiation and coolant application zones
within the processing plane for the three treatment
configurations investigated in this study.

The diagram is annotated as follows: (1) laser
beam, (2) refrigerant, (3) laser-induced crack, and
(4) quartz plate. The horizontal arrow indicates the
direction of the sample movement relative to the
laser beam and the refrigerant application zone.

II — II1. Experimental Design and Numerical
Simulation. A central composite design was imple-
mented in ANSYS DesignXplorer to plan the
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numerical experiments. The following input parame-
ters were selected: P, is the processing speed (V), P,
P; are the semi-major (4) and semi-minor (B) axes
of the elliptical laser beam, P, is the CO, laser
power (P), Ps is the quartz plate thickness (H).

In accordance with the experimental design,
simulations were performed for 27 factor combina-
tions. The analysis determined maximum tempera-
ture values (7}, T», T5) for the three processing con-
figurations of square quartz plates described previ-
ously, along with the corresponding maximum ten-
sile stress values (S, >, S3) acting perpendicular to
the laser-induced crack fronts (see Table 2.1).

IV. Artificial Neural Network (ANN) Model-
ing. The laser processing simulation using artificial
neural networks was implemented with the Tensor-
Flow library. The neural network implementation
employed ReLU activation functions and mean
squared error (MSE) as the loss metric, with model
optimization performed using the Adam optimizer
over 300 training epochs. The dataset incorporated
the original 27 central composite design configura-
tions supplemented by 100 additional finite element
simulation cases, of which 10 were reserved for test-
ing the neural network models (see Table 2.2).

The model quality assessment used the follow-
ing performance metrics: mean absolute error
(MAE), root mean square error (RMSE), mean abso-
lute percentage error (MAPE), and the coefficient of
determination (R?).

The optimal architectures for predicting maxi-
mum temperatures were achieved with a [5-50-30-6]
neural network for T1 and [5-40-40-6] networks for
both T2 and T3. For maximum tensile stress predic-
tion (S1, S2, S3), the best-performing architectures
selected through metric analysis were [5-20-30-6],
[5-40-40-6], and [5-50-30-6], respectively. The
complete evaluation results for all neural network
models are provided in Table 2.3.

Subsequently, a neuro-fuzzy model was devel-
oped using the ANFIS (Adaptive Neuro-Fuzzy In-
ference System) framework, i. e., a hybrid architec-
ture integrating neural networks with fuzzy logic
principles. The optimization and training of mem-
bership functions followed standard artificial neural
network algorithms. As detailed in [18], the ANFIS
inference system structure comprises five distinct
layers.
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Table 2.1 — Experimental design and computational results

N (KPI;]/S) ( Alj in) ( BI’) in) ( Pf) ;V) ( }i ;n) Ty, °K | Th, °K | T3, °K |S), MPa|S,, MPa|S;, MPa
1 0.015 | 0.002 0.0015 45 0.00125 780 787 802 66 147 65
2 | 0.005 | 0.002 0.0015 45 0.00125 1098 | 1069 1101 60 141 63
3 0.025 | 0.002 0.0015 45 0.00125 678 691 698 63 142 61
4 | 0.015 | 0.001 0.0015 45 0.00125 914 930 942 55 135 57
5 0.015 | 0.003 0.0015 45 0.00125 716 712 731 75 156 72
6 | 0.015 | 0.002 0.001 45 0.00125 897 904 924 63 143 63
7 | 0.015 | 0.002 0.002 45 0.00125 699 706 717 67 150 67
8 | 0.015 | 0.002 0.0015 30 0.00125 618 622 632 44 121 48
9 | 0.015 | 0.002 0.0015 60 0.00125 942 951 972 88 174 33
10 | 0.015 | 0.002 0.0015 45 0.0005 1172 | 1111 1180 60 65 67
11 | 0.015 | 0.002 0.0015 45 0.002 736 738 740 56 129 60
12 | 0.005 | 0.001 0.001 30 0.002 1003 | 1001 1008 38 100 54
13 | 0.025 | 0.001 0.001 30 0.0005 875 911 944 35 37 25
14 | 0.005 | 0.003 0.001 30 0.0005 1350 | 1186 1307 114 33 118
15 | 0.025 | 0.003 0.001 30 0.002 544 545 546 34 100 39
16 | 0.005 | 0.001 0.002 30 0.0005 1272 | 1219 1200 78 57 83
17 | 0.025 | 0.001 0.002 30 0.002 545 546 546 27 94 33
18 | 0.005 | 0.003 0.002 30 0.002 618 612 619 47 119 56
19 | 0.025 | 0.003 0.002 30 0.0005 623 612 633 56 58 40
20 | 0.005 | 0.001 0.001 60 0.0005 2885 | 2692 | 2782 163 113 174
21 | 0.025 | 0.001 0.001 60 0.002 1210 | 1211 1211 54 124 65
22 | 0.005 | 0.003 0.001 60 0.002 1118 | 1105 1122 87 166 93
23 | 0.025 | 0.003 0.001 60 0.0005 1204 | 1121 1245 106 107 76
24 | 0.005 | 0.001 0.002 60 0.002 1220 | 1217 1230 67 147 76
25 1 0.025 | 0.001 0.002 60 0.0005 968 1037 1045 73 78 53
26 | 0.005 | 0.003 0.002 60 0.0005 2184 | 1935 2057 239 180 248
27 | 0.025 | 0.003 0.002 60 0.002 617 619 620 70 143 69
Table 2.2 — Test dataset
N (KPHII/S) ( Af) ] BI,J o Pfj wl fi oy | 7K | 12K | T3 %K |5 MPaS, MPaS:, MPa
1 0.015 | 0.002 0.0015 45 0.00125 780 787 802 66 147 65
2 | 0.005 | 0.002 0.0015 45 0.00125 1098 | 1069 1101 60 141 63
3 0.025 | 0.002 0.0015 45 0.00125 678 691 698 63 142 61
4 | 0.015 | 0.001 0.0015 45 0.00125 914 930 942 55 135 57
5 0.015 | 0.003 0.0015 45 0.00125 716 712 731 75 156 72
6 | 0.015 | 0.002 0.001 45 0.00125 897 904 924 63 143 63
7 | 0.015 | 0.002 0.002 45 0.00125 699 706 717 67 150 67
8 | 0.015 | 0.002 0.0015 30 0.00125 618 622 632 44 121 48
9 | 0.015 | 0.002 0.0015 60 0.00125 942 951 972 88 174 83
10 | 0.015 | 0.002 0.0015 45 0.0005 1172 | 1111 1180 60 65 67
Table 2.3 — Neural network model evaluation results
Criterion T, T T; M S, S
RMSE 30K 37K 31K 3.8MPa 4.6 MPa 7.0 MPa
MAE 23 K 21 K 19K 2.7 MPa 5.4 MPa 5.1 MPa
MAPE 2.0% 1.9% 1.7% 3.6% 3.7% 7.3%
R* 0.9846 0.9799 0.9890 0.9680 0.9849 0.8959
Table 2.4 — Neuro-fuzzy model evaluation results
Criterion T, T, T; M S, S
RMSE 66 K 53K 66 K 9.9 MPa 11.0 MPa 8.3 MPa
MAE 60 K 49 K 60 K 7.9 MPa 9.3 MPa 7.3 MPa
MAPE 7.2% 5.9% 7.0% 11.2% 10.3% 11.3%
R’ 0.9490 0.9601 0.9522 0.7808 0.9222 0.8553
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Layer 1 (adaptive) represents fuzzification.
This initial adaptive layer handles the conversion of

crisp input parameters x, ..., x, into fuzzy linguistic
variables. The layer outputs are membership func-
tion values w;;, i=1, ... k,j=1, ..., n. Various mem-

bership functions (MFs) in this layer generate mem-
bership degree assessments from the input variables.
Layer 2 (non-adaptive) represents implication.
This layer implements fuzzy “if-then” rules, where
each fixed node establishes both the rule content and
its position within the fuzzy inference system. The
neurons in this layer output firing strengths w,
(g =1,..., L), which quantify the truth values of each
rule’s premise in the system’s knowledge base.
Layer 3 (non-adaptive) represents normaliza-
tion. This layer performs normalization of rule acti-
vation weights (firing strengths). The non-adaptive

M
20tV
Layer 4 (adaptive) represents defuzzification.

This adaptive layer implements the fuzzy inference
model, calculating output values w,_ f, for each

nodes compute: w, = , whereg=1, ..., L.

rule’s conclusion, where f, stands for input parame-
ter functions (¢ = 1,..., L).

Layer 5 (non-adaptive) represents output. This
final layer computes the system’s crisp output value
through weighted summation of all incoming signals

from Layer 4: Y = ZZ:I w, [, + W,

The training process involves simultaneous op-
timization of both premise parameters and conse-
quent parameters.

A neuro-fuzzy inference system was developed
to predict maximum temperatures (7}, 7>, 73) and
tensile stresses (S, 5>, S3) based on five input pa-
rameters: processing speed (V), laser beam elliptical
axes (semi-major 4 and semi-minor B), CO, laser
power (P), and quartz plate thickness (H). The sys-
tem implements Sugeno-type if-then rules with lin-
ear consequent functions, where crisp input parame-
ters are first converted into fuzzy sets through trian-
gular, trapezoidal, and Gaussian membership func-
tions during the fuzzification stage
If PyisAand P,is Band P;is Cand P,is D and Psis E

then Yisouta0+a1P1 +a2P2+a3P3+a4P4+a5P5,
where ay, ay, ..., as signify the coefficients to be
determined, and Y denotes either the maximum tem-
perature (7) or maximum tensile stress (5).

The ANFIS neuro-fuzzy model was trained us-
ing dataset obtained from numerical experiments.
A hybrid learning algorithm combining gradient
descent and least-squares estimation was employed,
implementing a two-phase optimization process:
first, while keeping the premise parameters fixed, it
adjusts the consequent parameters using the least-
squares method; then, with the consequents held
constant, it refines the premise parameters through
gradient descent optimization. The training protocol
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was configured with 10 epochs and a target error
tolerance of 0.

Table 2.4 presents the performance metrics of
the ANFIS neuro-fuzzy model for predicting both
maximum temperatures (73, 75, 75) and tensile
stresses (51, 52, S3). The developed model demon-
strates satisfactory accuracy compared to neural
network approaches, while requiring an order of
magnitude smaller training dataset than equivalent
neural network models.

V. Parameter optimization using MOGA ge-
netic algorithm. The multi-objective genetic algo-
rithm (MOGA) in ANSYS DesignXplorer was im-
plemented to optimize crystalline quartz laser cleav-
ing parameters. This optimization procedure focused
specifically on Processing Configuration 1. Notably,
the developed algorithm provides universal capabil-
ity for selecting optimal laser processing parameters
across all possible crystalline plane orientations.

The optimization considered the following criteria:

V — max, S} — max, 7< 1988 K.

The optimal parameter set was determined for
a quartz plate with 0.001 m thickness. The optimized
parameters are presented in Table 2.5, with corre-
sponding finite element modeling reference values
shown in parentheses. The MOGA algorithm dem-
onstrated high fidelity, with maximum relative error
not exceeding 5% across all response predictions.

Table 2.5 — Optimization results

P, P, Ps Pa | Ps 1p og| St
(V, m/s)| (4, m) | (B, m) |(P, W)|(H, m) I MPa
1381 | 102

0.0053 {0.0023|0.0017| 58 |0.001 (1413) (98)

Conclusion

This study has developed an integrated meta-
model comprising five key components: finite ele-
ment modeling (I), experimental design (II) and nu-
merical simulation (IIT), neural network and neuro-
fuzzy system development (IV), genetic algorithm
optimization (V) using MOGA methodology.

Using APDL programming language, the finite
element model determined temperature distributions
and thermoelastic stress fields generated in
monocrystalline quartz plates during sequential laser
heating and refrigerant application. The numerical
investigation analyzed how four key parameters,
namely processing speed, elliptical laser beam ge-
ometry, CO: laser power, and plate thickness, affect
peak temperatures and tensile stresses generated
during laser cleaving of crystalline quartz, following
a central composite design framework for the com-
putational experiment. The study identified optimal
artificial neural network architectures for predicting
maximum temperatures and stresses under specified
input parameters. While ANN models demonstrated
high accuracy, the developed ANFIS neuro-fuzzy
systems, combining neural networks with fuzzy logic,
achieved satisfactory precision with significantly
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smaller training datasets. Parameter optimization
using the MOGA genetic algorithm in Design-
Xplorer yielded effective processing conditions, de-
livering results with high fidelity (<5% error margin).

The developed metamodel offers an effective
practical solution for improving crystalline quartz
laser cleaving quality, significantly reducing both
time expenditures and computational resource re-
quirements compared to direct numerical simula-
tions or costly physical experiments. Its key advan-
tage lies in genetic algorithm-based process optimi-
zation that automatically identifies optimal laser
processing parameters (power, speed, beam focus,
and plate thickness) to produce clean fracture sur-
faces with minimal defects. By combining finite
element analysis, neural networks, and neuro-fuzzy
systems, the model enables rapid high-accuracy
process simulation while substantially reducing the
need for expensive equipment trial runs on physical
equipment.

The proposed metamodel serves as an effective
tool for enhancing efficiency, reducing production
costs, and ensuring consistent high quality in indus-
trial laser cleaving of quartz.
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