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Аннотация. Рассматривается одна двухэтапная (ступенчатая) задача оптимального управления, описываемая на двух 
отрезках времени различными интегро-дифференциальными уравнениями типа Вольтерра. При предположении  
открытости области управления вычислены первая и вторая вариации функционала качества типа Больца. Получен 
аналог уравнения Эйлера (необходимое условие оптимальности первого порядка). Используя условие не отрицатель-
ности второй вариации функционала качества вдоль оптимального управления, доказан ряд конструктивно  
проверяемых необходимых условий оптимальности второго порядка. Изучен случай классически особых управлений. 
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Введение 
Многие процессы являются многоэтапными 

(их называют также ступенчатыми) [1]–[6]. По-
добные процессы в различных отрезках времени 
описываются различными уравнениями. В рабо-
тах [1]–[6] и др. исследованы ряд ступенчатых 
задач оптимального управления, описываемые 
обыкновенными дифференциальными уравне-
ниями. В этих работах доказаны аналоги прин-
ципа максимума Л.С. Понтрягина. 

Как известно (см., напр., [7]–[9]), многие 
модели управляемых динамических систем 

описываются интегро-дифференциальными ура-
внениями типа Вольтерра.  

Выводу ряда необходимых условий опти-
мальности первого порядка типа принципа мак-
симума Понтрягина в задачах оптимального уп-
равления, описываемых интегро-дифференциаль-
ными уравнениями, посвящены работы [10]–[12]. 

В работе [13] была рассмотрена одна сту-
пенчатая задача оптимального управления, опи-
сываемая на различных отрезках времени нели-
нейными интегро-дифференциальными уравне-
ниями.  
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Был доказан аналог принципа максимума, а 
в случае выпуклости областей управления уста-
новлен аналог линеаризованного условия макси-
мума. 

В предлагаемой работе аналогичная задача 
(т. е. задача оптимального управления из [13]) 
исследуется при предположении открытости об-
ластей управления.  

Получен аналог уравнения Эйлера (необхо-
димое условие оптимальности первого порядка) 
[14], [15] и установлено общее необходимое ус-
ловие оптимальности второго порядка, носящее 
конструктивный характер. 

Отдельно изучен случай особых, в класси-
ческом смысле (см., например, [16]–[18]), управ-
лений. 

 
1 Постановка задачи 
Предположим, что  1 0 1, ,T t t   1 1 2,T t t  

0 1 2( )t t t   – заданные отрезки, 1 2,r qU R U R   – 
заданные непустые, ограниченные и открытые 
множества. 

Допустим, что ступенчатый процесс описы-
вается двумя системами нелинейных интегро-
дифференциальных уравнений типа Вольтерра 

1 1 1 1( ) ( , ( ), ( ))x t f t x t u t   
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K t x u d t T               (1.1) 

 1 0 10 ,x t x                         (1.2) 

2 2 2 2( ) ( , ( ), ( ))x t f t x t u t   

1

2 2 2 2( , , ( ), ( )) , .
t

t

K t x u d t T              (1.3) 

 2 1 1 1( ( )).x t G x t                   (1.4) 

Здесь ( , , ),i i if t x u  ( , , , ),i i iK t x u  1, 2i   – за-

данные n-мерные вектор-функции, непрерывные 
по совокупности переменных вместе с частными 
производными по ( , ), 1, 2i ix u i   до второго по-

рядка включительно,  1G x  – дважды непрерыв-

но-дифференцируемая n-мерная вектор-функция, 

10x  – постоянный вектор, 1( )u t   2 ( )u t  –  

 r q -мерный кусочно-непрерывный вектор уп-

равляющих функций со значениями из множест-
ва  1 2 ,U U  т. е.  

1 1 1( ) , ,nu t U R t T    

2 2 2( ) , .qu t U R t T                  (1.5) 

Такие управляющие функции назовем до-
пустимыми управлениями, пару  1 2( ), ( )u t u t  – 

допустимым управлением. 
Будем предполагать, что каждому допусти-

мому управлению  1 2( ), ( )u t u t  соответствует 

единственное кусочно-гладкое (в смысле,  

например, [14]) решение  1 2( ), ( )x t x t  задачи 

(1.1)–(1.4). 
На решениях задач (1.1), (1.2) и (1.3), (1.4), 

порожденных всевозможными допустимыми 
управлениями, определим функционал типа 
Больца 
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Здесь ( ), 1, 2i ix i   – заданные дважды не-

прерывно-дифференцируемые скалярные функ-
ции, ( , , , ),i i iF t x u  1,2i   – скалярные функции, 

непрерывные по совокупности переменных вме-
сте с частными производными по ( , ), 1,2i ix u i   

соответственно. 
Допустимое управление  1 2( ), ( ) ,u t u t  дос-

тавляющее минимальное значение функционалу 
(1.6) при ограничениях (1.1)–(1.5), назовем оп-
тимальным управлением, а соответствующий 
процесс  1 2 1 2( ), ( ), ( ), ( )u t u t x t x t  – оптимальным 

процессом.  
Целью настоящей работы является вывод 

необходимых условий оптимальности первого и 
второго порядков в рассматриваемой задаче оп-
тимального управления. 

 
2 Формула приращения второго порядка 

критерия качества 
Пусть  1 2 1 2( ), ( ), ( ), ( )u t u t x t x t  – некоторый 

допустимый процесс, 

 1 1 1( ) ( ) ( ),u t u t u t    2 2 2( ) ( ) ( ),u t u t u t    

1 1( ) ( )x t x t 1( ),x t  2 2 2( ) ( ) ( )x t x t x t    
– произвольный допустимый процесс.  

Запишем приращение функционала (1.6), 
отвечающее допустимым управлениям 

 1 2( ), ( )u t u t  и  1 2( ), ( ) :u t u t  
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         (2.1) 

В силу введенных обозначений ясно, что 
приращения 1 2( ), ( )x t x t   траекторий 1( )x t  и 

2 ( )x t  будут соответственно решениями задач 

 1 1 1 1 1 1 1( , ( ), ( )) ( , ( ), ( ))x t f t x t u t f t x t u t     
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 2 1 1 1 1 1( ( )) ( ( )).x t G x t G x t             (2.5) 

Пусть ( ), 1, 2i t i   – пока неизвестные  

n-мерные кусочно-гладкие вектор-функции. 
Применяя формулу Дирихле (см., например, 

[15]) доказывается, что  

 



1

0 0

1 1 1 1

1 1 1

( , , ( ), ( ))

( , , ( ), ( ))

t t

t t

t K t x u

K t x u d dt


    



     



 
 

 



1 1

0

1 1 1 1

1 1 1

( , , ( ), ( ))

( , , ( ), ( )) ,

t t

t t

K t x t u t

K t x t u t d dt


    




  


 
      (2.6) 

 



2

1 1

2 2 2 2

2 2 2

( , , ( ), ( ))

( , , ( ), ( ))

t t

t t

t K t x u

K t x u d dt


    




     


 
 

 



2 2

1

2 2 2 2

2 2 2

( , , ( ), ( ))

( , , ( ), ( )) ,

t t

t t

K t x t u t

K t x t u t d dt


    




  


 
      (2.7) 

 
1

0 0

1 1 1 1 1 1( , , ( ), ( )) ( , , ( ), ( ))
t t

t t

F t x u F t x u d dt
 

          
 
   





1 1

0

1 1 1

1 1 1

( , , ( ), ( ))

( , , ( ), ( )) ,

t t

t t

F t x t u t

F t x t u t d dt


  




  


 
          (2.8) 

 
2

1 1

2 2 2 2 2 2( , , ( ), ( )) ( , , ( ), ( ))
t t

t t

F t x u F t x u d dt
 

          
 
   





2 2

1

2 2 2

2 2 2

( , , ( ), ( ))

( , , ( ), ( )) .

t t

t t

F t x t u t

F t x t u t d dt


  




  


 
            (2.9) 

Далее, учитывая  начальные условия (2.3) и 
(2.5), получаем, что 
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Введем аналоги функции Гамильтона – 
Понтрягина в виде 
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Учитывая тождества (2.7)–(2.11), а также 
введенные обозначения, приращение (2.1) функ-
ционала (1.6) записывается в виде 
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Введем обозначение 

    2 1 1 2 1 1, ( )M t x t G x    

и преобразуем отдельные слагаемые в формуле 
приращения (2.12). 

Используя формулу Тейлора, получим, что 
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  2

2 ( ) ( ) , 1,2,i i io x t u t i        (2.14) 

         2 1 1 1 2 1 1 1, ,M t x t M t x t     

      

 
      
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2
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x
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

 
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 2

5 1 1( ) .o x t                   (2.15) 

Здесь   – норма вектора 1 2( , ,..., ) ,n       

определяемая формулой 
1

,
n

i
i

    а 2( )o   – 

величина более высокого порядка малости, чем 

2 ,  т. е. 
2

2

( )
0

o 



 при 0.   

Учитывая разложения (2.13)–(2.15), форму-
ла приращения (2.12) функционала (1.6) будет 
иметь вид: 
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
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Предположим, что вектор-функции   ,i t  

1, 2i   являются решениями линейных интегро-
дифференциальных уравнений 

  ( , ( ), ( ), ( ))
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Тогда формула приращения (2.16) принима-
ет вид 
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Из результатов работы [13] следует, что при 
сделанных предположениях в случае 2 ( ) 0u t   

 
1

0

1 1 1 1( ) , ,
t

t

x t L u d t T               (2.19) 

 
1

0

2 2 1 2( ) , ,
t

t

x t L u d t T              (2.20) 

0, 1, 2.iL const i    

В случае, когда 1( ) 0,u t   2 ( ) 0,u t   име-

ют место оценки: 

 1 10, ,x t t T    

 
1

1

2 3 2 2( ) , ,
t

t

x t L u d t T           (2.21) 

3 0.L const   

Используя эти оценки, с помощью формулы 
приращения (2.18), найдем выражения первой и 
второй вариаций функционала качества. 
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3 Вариации функционала 
В силу независимости управляющих функ-

ций, полагая  2 ( ) 0,u t   определим 1( )u t  сле-

дующим специальным образом 

   1 1 1; , .u t u t t T                   (3.1) 

Здесь ε – достаточно малое по абсолютной 
величине число, а  1 1,ru t R t T    – произволь-

ная, кусочно-непрерывная вектор-функция. 
Через  1 ; ,x t    2 ;x t   обозначим 

специальные приращения траекторий  1x t  и 

 2 ,x t  отвечающие специальному приращению 

(3.1) управляющей функции  1 .u t  

Из оценок (2.19) и (2.20) следует, что 

 1 ;x t   и  2 ;x t   имеют порядок малости ε. 

Из задач Коши (2.2), (2.3) и (2.4), (2.5) полу-
чаем, что  1x t  и  2x t  являются решениями 

следующих линеаризованных задач Коши: 
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   

   

2 2 2
2 2

2

2 2 2
2 8 2

2

( , ( ), ( ))

( , ( ), ( ))
( )

f t x t u t
x t x t

x

f t x t u t
u t o x t

u


   




    



 

 
1

2 2 2
2

2

( , , ( ), ( ))t

t

K t x u
u d

x

   
    

  

 
1

9 2 ( ) ,
t

t

o x d                    (3.4) 

   1 1
2 1 1 1 10 1 1

1

( ( ))
( ) ( ) .

G x t
x t x t o x t

x


   


 (3.5) 

Заметим, что при 1( ) 0u t   линеаризован-

ная задача для 2 ( )x t  имеет вид: 
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        (3.6) 

 2 1 0.x t                          (3.7) 

Учитывая формулу (3.1) и того, что при 

этом  1 ;x t   и  2 ;x t   имеют порядок ма-

лости ε, с помощью задач (3.2), (3.3) и (3.4), (3.5) 
доказывается следующее утверждение 

Лемма 3.1. Для  1 ; ,x t    2 ;x t   имеют 

место следующие разложения: 

     1 1 13; ; ,x t x t o t               (3.8) 

     2 2 14; ; .x t x t o t               (3.9) 

Здесь  1x t  и  2x t  являются решениями 

уравнений в вариациях 
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 1 0 0,x t                        (3.11) 
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
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         (3.13) 

Положим 1( ) 0,u t   тогда 2 ( )u t  опреде-

лим по формуле 

   2 2 2; , .u t u t t T              (3.14) 

Здесь,   – достаточно малое по абсолютной 

величине число, а  2 2,qu t R t T    произволь-

ная, кусочно-непрерывная и ограниченная век-
тор-функция (допустимая вариация управления 

2 ( )).u t  

Через  2 ;x t   обозначим специальное 

приращение траектории  2 ,x t  отвечающие спе-

циальному приращению (3.14) управляющей 
функции  2 .u t  

При этом, с помощью линеаризованной сис-
темы (3.6), (3.7) доказывается 
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Лемма 3.2. Для  2 ;x t   имеет место сле-

дующее разложение: 

     2 10; ; .x t y t o t               (3.15) 

Здесь  y t  является решением задачи 
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    (3.16) 

 1 0.y t                        (3.17) 

Используя формулы (3.1), (3.14), (3.8), (3.9) 
и (3.15), из формулы приращения (2.18) получа-
ем справедливость разложений 

   1 1 2 1 2, ,J u u u J u u     

1

0

1 1 1 1
1

1

( , ( ), ( ), ( ))
( )

t

t

H t x t u t t
u t dt

u

 
   

  

1

0

22
1 1 1 1

1 12
1

2
1 1 1 1

1 1
1 1

2
1 1 1 1

1 12
1

( , ( ), ( ), ( ))
( ) ( )

2

( , ( ), ( ), ( ))
2 ( ) ( )

( , ( ), ( ), ( ))
( ) ( )

t

t

H t x t u t t
x t x t

x

H t x t u t t
u t x t

u x

H t x t u t t
u t u t dt

u

       

    
 

    



 

2

1

22
2 2 2 2

2 22
2

( , ( ), ( ), ( ))
( ) ( )

2

t

t

H t x t u t t
x t x t dt

x

     
  

 
    

22
1 1 1

1 1 1 12
12

x t
x t x t

x

     


 

 
    

22
2 2 2

2 2 2 22
22

x t
x t x t

x

     


 

 
      

22
2 1 1 1 2

1 1 1 12
1

,
( ),

2

M t x t
x t x t o

x

      


(3.18) 

   1 2 2 1 2, ,J u u u J u u    

 
    

2

1

2 2 2 2
2

2

22
2 2 2

2 22
2

( , ( ), ( ), ( ))
( )

2

t

t

H t x t u t t
u t dt

u

x t
y t y t

x

 
   



   



 

2

1

22
2 2 2 2

2

2
2 2 2 2

2
2 2

( , ( ), ( ), ( ))
( ) ( )

2

( , ( ), ( ), ( ))
2 ( ) ( )

t

t

H t x t u t t
y t y t

x

H t x t u t t
u t y t

u x

     

   
 


 

2
2 2 2 2

2 22
2

( , ( ), ( ), ( ))
( ) ( )

H t x t u t t
u t u t dt

u

    
 

2( ).o                              (3.19) 

Из разложений (3.18) и (3.19) следует, что 
первая и вторая вариации функционала (1.6) 
имеют соответственно вид: 
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4 Необходимые условия оптимальности 
Доказанные выражения первой и второй ва-

риации функционала качества (1.6) позволяют 
установить необходимые условия оптимальности 
первого и второго порядков. 

В силу открытости областей управления 
вдоль оптимального управления  1 2( ), ( )u t u t  

первые вариации функционала должны равнять-
ся нулю. Поэтому из формул (3.20) и (3.21) по-
лучаем, что вдоль оптимального управления 



Аналог уравнения Эйлера и необходимые условия оптимальности второго порядка в одной двухступенчатой задаче управления… 
 

Problems of Physics, Mathematics and Technics, № 4 (65), 2025 81

 1 2( ), ( ) ,u t u t  для всех  1 1,ru t R t T    и 

 2 2,qu t R t T    
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Из этих соотношений, в силу произвольно-
сти  1u t  и  2 ,u t  следует 

Теорема 4.1. Для оптимальности допусти-
мого управления  1 2( ), ( )u t u t  необходимо, чтобы 

соотношения 
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выполнялись для всех  0 1,t t  и  1 2,t t  со-

ответственно. 
Соотношения (4.1) и (4.2) являются необхо-

димыми условиями оптимальности первого по-
рядка и представляют собой аналог уравнения 
Эйлера из классического вариационного исчис-
ления (см., например, [2]–[4]). 

Каждое допустимое управление  1 2( ), ( ) ,u t u t  

являющееся решением уравнения Эйлера (4.1) и 
(4.2), следуя, например, [4], назовем классиче-
ской экстремалью.  

Для сужения множества классических экс-
тремалей надо иметь необходимые условия оп-
тимальности второго порядка, носящие конст-
руктивный характер. 

Из выражений (3.22), (3.23) вторых вариа-
ций функционала качества (1.6) следует, что для 
оптимальности классической экстрема-
ли,  1 2( ), ( )u t u t  необходимо, чтобы неравенства 
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выполнялись для всех допустимых вариаций 

 1u t  и  2u t  классической экстремали 

 1 2( ), ( ) .u t u t  

Как видно, необходимые условия опти-
мальности (4.3) и (4.4.) носят неявный характер. 
Поэтому их практическая ценность невелика. 

Учитывая это, получим необходимые усло-
вия оптимальности явно выраженные через па-
раметры рассматриваемой задачи оптимального 
управления. 

Пусть  1 ,F t   и  2 , ( )F t n n   матричные 

функции, являющиеся решениями матричных 
интегро-дифференциальных уравнений 
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Здесь E  единичная матрица. 
Имеет место следующее утверждение 
Лемма 4.1. Решения задач (3.10), (3.11), 

(3.12), (3.13) и (3.16), (3.17) имеют вид: 

   
0

1 1 1
1 1 1

1

( , ( ), ( ))
, ( )

t

t

f x u
x t F t u d

u

   
      

  

 
0

1 1 1
1 1

1

( , , ( ), ( ))
, ( ) ,

t t

t

K s x s u s
F t s ds u d

x

  
    

 
  (4.5) 

     1 1
2 2 1 1 1

1

( ( ))
, ,

G x t
x t F t t x t

x


  


      (4.6) 

   
1

2 2 2
2 2

2

( , ( ), ( ))
, ( )

t

t

f x u
y t F t u d

u

   
     

  

 
1

2 2 2
2 2

2

( , , ( ), ( ))
, ( ) .

t t

t

K s x s u s
F t s ds u d

x

  
    

 
  (4.7) 



К.Б. Мансимов, А.Ф. Мансимзаде 
 

                 Проблемы физики, математики и техники, № 4 (65), 2025 82 

Учитывая формулы (4.5) и (4.6), получим 
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Введя обозначения  
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формулы (4.5), (4.6) и (4.7) записываются в виде 
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Полученные формулы позволяют доказать 
конструктивно проверяемые необходимые усло-
вия оптимальности второго порядка. 

Преобразуем отдельные слагаемые в нера-
венствах (4.3), (4.4). 

Используя (4.8) и (4.9) доказывается, что  
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Далее используя (4.10) доказывается, что  
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           (4.18) 

Введем обозначения 

   
    

2
1 1 1

1 1 1 1 12
1

, , ,
x t

K s Q t Q t s
x

 
    


 

 
    

2
2 2 2

2 1 2 12
2

, ,
x t

Q t Q t s
x

 
  


 

 
 

 
1 2

1 1 1 1
1 12

1max ,

( , ( ), ( ), ( ))
, ,

t

s

H t x t u t t
Q t Q t s dt

x

   
  

   
2

1

2
2 2 2 2

2 22
2

( , ( ), ( ), ( ))
, , ,

t

t

H t x t u t t
Q t Q t s dt

x

  
 (4.19) 



Аналог уравнения Эйлера и необходимые условия оптимальности второго порядка в одной двухступенчатой задаче управления… 
 

Problems of Physics, Mathematics and Technics, № 4 (65), 2025 83

   
    

2
2 2 2

2 3 2 2 22
2

, , ,
x t

K s Q t Q t s
x

 
    


(4.20) 

 
 

 
2 2

2 2 2 2
3 32

2max ,

( , ( ), ( ), ( ))
, , .

t

s

H t x t u t t
Q t Q t s dt

x

  
  

Учитывая доказанные тождества (4.11)–
(4.18) и обозначения (4.19), (4.20) в неравенствах 
(4.3), (4.4), получим справедливость неравенств 
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Теорема 4.2. Для оптимальности классиче-
ской экстремали  1 2( ), ( )u t u t  необходимо, что-

бы неравенства (4.21) и (4.22) выполнялись для 
всех  1 1,ru t R t T    и  2 2,qu t R t T    соот-

ветственно. 
Эти неравенства (необходимые условия оп-

тимальности второго порядка) являются общими. 
Из них, используя произвольность допусти-

мых вариаций  1u t  и  2u t , можно получить 

ряд новых необходимых условий оптимальности. 
Cледствием теоремы 4.2 является 
Теорема 4.3. Для оптимальности классиче-

ской экстремали  1 2( ), ( )u t u t  необходимо, что-

бы неравенства  
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выполнялись для всех 1 ,rv R   0 1,t t  и 

2 ,qv R   1 2,t t  соответственно. 

Неравенства (4.23) и (4.24) являются анало-
гом условия Лежандра – Клебша (см., например, 
[4]) для рассматриваемой задачи оптимального 

управления из классического вариационного ис-
числения. 

Как видно, аналог условия Лежандра – 
Клебша менее информативен, чем условия опти-
мальности (4.21) и (4.22). 

Более того, во многих задачах оптимального 
управления аналог условия Лежандра – Клебша 
может вырождаться (см., например, [4]–[6]). 

Определение 4.1. Классическую экстремаль 

 1 2( ), ( )u t u t  назовем особой, в классическом 

смысле в рассматриваемой задаче, если соотно-
шения 
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выполняются для всех 1 ,rv R   0 1,t t  и 

2 ,qv R   1 2,t t  соответственно. 

Получим необходимое условие оптимально-
сти особых, в классическом смысле, управлений. 

Пусть  1 2( ), ( )u t u t  особое, в классическом 

смысле, оптимальное управление.  
В силу произвольности допустимых вариа-

ций   1 ,u t  2u t  управления  1 2( ), ( ) ,u t u t  

полагая 2 ( ) 0,u t   1( )u t  определим по формуле  
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      (4.25) 

Здесь 1
rv R  – произвольный вектор, 

 0 1,t t  произвольная точка непрерывности 

управления 1( ),u t  а ε > 0 произвольное малое 

число, такое, что 1.t    

Учитывая формулу (4.25), определение осо-
бого, в классическом смысле, управления 1( ),u t  

из неравенства (4.21) получим, что 
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Разделяя обе части этого неравенства на 2  
и переходя к пределу при 0,   получим, что  
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(4.26) 

Полагая 1( ) 0,u t   допустимую вариацию 

2 ( )u t  управления определим по формуле 
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Здесь 2
qv R  произвольный вектор, 

 1 2,t t  произвольная точка непрерывности 

управления 2 ( ),u t  а   > 0 произвольное малое 

число, такое, что 2.t   

Учитывая формулу (4.27) в неравенстве 
(4.22), получим, что 
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              (4.28) 

Отсюда в силу произвольности   > 0 при-

ходим к неравенству   
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               (4.29) 

Следовательно, доказана 
Теорема 4.4. Для оптимальности особого,  

в классическом смысле, управления  1 2( ), ( )u t u t  

необходимо, чтобы неравенства (4.28) и (4.29) 
выполнялись для всех 1 ,rv R   0 1,t t  и 

2 ,qv R   1 2,t t  соответственно. 
 

Заключение 
Рассматривается двухэтапная задача опти-

мального управления, описываемая на различ-
ных отрезках времени различными интегро-
дифференциальными уравнениями типа Воль-
терра. Начальное условие второго уравнения 
связано с конечным значением решения первого 
уравнения. 

При предположении открытости областей 
управления получен аналог уравнения Эйлера 
(необходимое условие оптимальности первого 
порядка).  

Установлено общее необходимое условие 
оптимальности второго порядка, позволяющее 
получить ряд конструктивно проверяемых необ-
ходимых условий оптимальности второго поряд-
ка, в частности, необходимое условие оптимально-
сти особых, в классическом смысле управлений. 
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