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AHHOTammsi. PaccunTaHbl TeMIepaTypHble OIS B IPOLECCAX JIA3€PHOrO YNPABISEMOrO TEPMOPACKAIBIBAHUS XPYIKHX
HEMETA/UIMYECKUX MAaTePHAOB C MCIIOIb30BAHMEM JBYX IIyYKOB JIa3CPHOTO H3Iy4EHHs B INPHCYTCTBHH XJIaJarcHTa.
Ha ocHOBaHWHM JJaHHEIX O paclpeeNICHUH TeMIIepaTyphl [0 IOBEPXHOCTU U B 00bEME MaTepHAIIOB IIPOBEICHA OLICHKA BEPXHETO
npejesa TePMUYECKOr0 MUKPOHANPSDKEHHs. JTa nHpopManus HeoOXoauMa a1 000CHOBaHHOTO BBIOOpA PEXKUMOB JIa3ePHOI
00pabOTKM yKa3aHHBIX MAaTEPHANIOB, B YAaCTHOCTH, KBapIIEBOTO M CHIMKATHOTO CTEKOJ, B TEXHOJOTMYECKUX IpOLeccax
MHKPOJICKTPOHHKH.

KiroueBble cjioBa: JdsepHoe  U3Ny4eHusd, memnepamypHoe nojie, MUKpOMeXanudeckue mepmoynpycue HANpAMNCenus,
Mmamemamudeckoe M(}()&'lupO(SGHME.
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Abstract. The study presents calculations of temperature fields in controlled laser thermal cleaving of brittle non-metallic
materials using two laser beams with a coolant. An estimation of the upper limit of thermal micro-stress was conducted based
on the temperature distribution data across the surface and within the volume of the materials. This information is essential for
the substantiated selection of laser processing parameters for the specified materials, particularly quartz and silicate glasses,
in microelectronics manufacturing processes.
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Introduction

Laser cleaving is a technique for cutting brittle
non-metallic materials such as silicate glasses. This
procedure separates the material by initiating a crack
through sequential laser heating followed by coolant
application to the treated surface [1], [2]. Currently,
the dual-beam laser thermal cleaving method for
brittle non-metallic materials is widely employed
[3]-[7]. This technique utilizes three processing
tools simultaneously: radiation from a solid-state
laser (1.06 pm), radiation from a CO, laser
(10.6 um), and a flow of air-water mixture serving
as a coolant. Figure 0.1 illustrates a schematic dia-
gram of the experimental setup for dual-beam laser
thermal cleaving of glass.
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Figure 0.1 — Schematic diagram of the laser beams
and coolant arrangement in the processing plane
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Item 1 represents the CO, laser beam, item 2
denotes the YAG laser beam, and item 3 refers to the
coolant. The optical system forms the laser beam
with a wavelength of A =10.6 um into an elliptical
spot on the sample surface, oriented with its major
axis along the material processing line. Directly fol-
lowing this beam is the laser beam with a wave-
length of A =1.06 um, which is focused on the sam-
ple surface, with its center located on the material
processing line. The coolant, in the form of an air-
water mixture, is delivered directly after the beam
with a wavelength of A =1.06 pm and is formed into
a circular spot on the sample surface, whose center
also lies on the material processing line.

1 Problem Statement for the Modeling

Such combined thermal impact on the surface
of the processed material can be modeled by a com-
bination of heat sources (laser radiation) and heat
sinks (coolant action), as shown in Figure 1.1.
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Figure 1.1 — Visualization of the laser beams and
coolant model in the processing plane: 1 — CO, laser
beam, 2 — YAG laser beam, 3 — cooling zone

In this case, the solution to the heat conduction
problem can be obtained using the Green’s function
method. The Green’s function for a semi-infinite
medium, dependent on spatial coordinates » = (x, y, z)
and time ¢, is given by [8], [9]:
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where a = A/(c-p) is the thermal diffusivity; A is the
thermal conductivity, c is the specific heat capacity,
p is the density, O(r, {) is the volume heat generation
rate, r'=(x',y",z").

Thus, the solution to the heat conduction equa-
tion can be represented as:

T(r,t) = [o(r,t;7,0)Q(r;tdt'd’r'.  (12)
Based on equations (1.1) and (1.2), it is possi-
ble to model the dynamics of the temperature field
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within the region of the described combined action.
Here, the heat source model O(r, f) can be repre-
sented as a superposition of the effects from both
types of laser radiation and the coolant, according to
Table 1.1.

2 Evaluation of Model Parameters and
Computation of Values

The calculations were conducted in the Math-
cad system to represent the dynamics of the tem-
perature field resulting from the combined action,
using equations (1.1) and (1.2) along with Table 1.1.
The heat source model represented a superposition
of the three impacts listed in Table 1, shifted along
the x-axis in the direction of the controlled thermal
cleaving line formation. Figure 2.1 shows the ther-
mal impact profile along the processing direction
(left to right) for the case of P, = 1-:0° W/nr’,
A =10"m, 4, =2-4,, Ay =34, (see Table 1.1).

110,

w109

Po, Wim"2

0 St et 13x1077 210°7°
X m
Figure 2.1- Thermal impact profile along
the processing direction

Figure 2.2 depicts the temperature distribution
as a function of the distance from the center of the
coolant impact zone at a processing speed of v= 10" m/s
at different time instances from the onset of the
thermal influence on the surface of quartz glass (see
Figure 2.2, a) and silicate glass (see Figure 2.2, b)
with their respective thermophysical characteristics.

The primary criterion for optimizing the tech-
nological parameters, derived from the temperature
field data, is the maximum temperature value in the
processing zone, which determines the material frac-
ture mechanism.

For glasses, the corresponding glass transition
temperature of the specific glass grade is selected as
the upper limit of allowable temperatures. Specifi-
cally, the glass transition temperature is 789 K for
sheet silicate glass and 1473 K for quartz glass.

Furthermore, the information about the deve-
lopment of thermoelastic fracture can be obtained
from the temperature distribution data through the
depth of the studied materials. Figure 2.3 shows the
temperature distribution across the material depth at
different time instances.
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Table 1.1 — Models of energy impact on the material surface during dual-beam laser thermal cleaving, im-

plemented in the computer mathematics system Mathcad.

1.Type of impact

Elliptical CO, laser beam (A = 10.6 um)

Mathcad Formula
74, B,

Q2 (x,y,z,t) = i[@.}. y2 Jexp[ﬂ_i_i]exp(_yz)

B £ B

Model Visualization

2. Type of impact

Circular YAG laser beam (A = 1.06 um)

Mathcad Formula

Ql(x3y3zat) = })0 exp[

+—yz
A B} b

—(x-wt)” 5 ]

Model Visualization

3. Type of impact

Coolant

Mathcad Formula

P - (x - vt)2 ¥
0.(x,,z,1): exp - —yz

(504,

Model Visualization

Under high-temperature micro-deformation
conditions, these materials may exhibit brittle frac-
ture. To analyze the feasibility of implementing
dual-beam laser cleaving [10], [11] of glasses with
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subsequent formation of a laser-induced crack, it is
essential to obtain information regarding the distri-
bution of thermoelastic stresses within the volume of
the materials being processed.
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Figure 2.2 — Temperature distribution profile on the surface of quartz (@) and silicate (b) glass
at different processing time instances
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Figure 2.3 — Temperature distribution through the depth of quartz (a) and silicate (b) glass
at different processing time instances
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Figure 2.4 — Distribution profile of thermomechanical micro-stresses along the scanning axis at different time
instances for quartz (a) and silicate (b) glass

An important challenge involves studying the
thermal response of a region with a time-varying
boundary under heating and/or cooling. According
to the methodology proposed in [12], the upper
estimate of thermal micro-stress ¢ during surface
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processing along the direction » can be calculated
using the formula:

\/gEa(T(r,t)—To)

o(r,t)

max

1-2v

>
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where: E is the Young’s modulus for diamond, o is the
linear expansion coefficient, v is the Poisson’s ratio.

Figure 2.4 presents the computed values of the
upper estimate of thermal micro-stress ¢ along the
sample processing line at different time instances for
a scanning speed of v= 10" m/s at a depth of 10™* m.

The analysis of the distribution of the upper
stress estimates ¢ shown in Figure 2.4 reveals that
the initiation of a separating micro-crack occurs in
the material's surface layers, starting from a crack-
like microstructural defect within the tensile stress
zone generated by the coolant supply. Subsequently,
the initial micro-crack begins to propagate and ex-
tends until it reaches the compressive stress zone
created by the laser radiation. The distribution of
compressive stresses within the sample volume de-
termines the shape and penetration depth of the mi-
cro-crack, whose initiation and intensive develop-
ment occur in the tensile stress zone generated in the
coolant application area.

After the micro-crack reaches its maximum
penetration depth, unsteady crack growth ceases,
and its subsequent propagation is determined by
changes in the spatial distribution of tensile and
compressive stress zones. The observed changes
result from the relative movement between the proc-
essed material, laser radiation, and coolant.

Conclusion

The constructed model for dual-beam thermal
cleaving of brittle non-metallic materials provides a
straightforward means to assess the feasibility of
forming thermoelastic micro-stress fields both on the
surface and within the material volume. This enables
informed selection of laser processing parameters
for silicate glasses and other brittle non-metallic
materials in electronics technologies.
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