

ОБ ОДНОМ КЛАССЕ ПОДРЕШЕТОК РЕШЕТКИ ПОДГРУПП КОНЕЧНОЙ ГРУППЫ

Н.С. Косенок, И.В. Близнец

Гомельский государственный университет имени Франциска Скорины

ON A CLASS OF SUBLATTICES OF THE SUBGROUP LATTICE OF A FINITE GROUP

N.S. Kosenok, I.V. Blisnets

Francisk Skorina Gomel State University

Аннотация. В данной работе: G – конечная группа; $\sigma = \{\sigma_i \mid i \in I\}$ – некоторое разбиение множества всех простых чисел \mathbb{P} ; $\Pi \subseteq \sigma$; $\sigma(n) = \{\sigma_i \mid \sigma_i \cap \pi(n) \neq \emptyset\}$ (n – целое число) и $\sigma(G) = \sigma(|G|)$. Группа G называется: (i) σ -примарной, если G является σ_i -группой для некоторого $i \in I$; (ii) σ -нильпотентной, если G – прямое произведение σ -примарных групп; Π -группой, если $\sigma(G) \subseteq \Pi$. Подгруппа A конечной группы G называется: (i) σ -субнормальной в G , если в G существует цепь подгрупп $A = A_0 \leq A_1 \leq \dots \leq A_t = G$ такая, что либо $A_{i-1} \trianglelefteq A_i$, либо $A_i / (A_{i-1})_{A_i}$ является σ -примарной группой для всех $i = 1, \dots, t$; (ii) холловской Π -подгруппой G , если A является Π -группой и $\sigma(|G:A|) \cap \Pi = \emptyset$. Мы говорим, что подгруппа H группы G является строго σ -субнормальной, если H^G / H_G является σ -нильпотентной группой. В данной работе мы доказываем, что множество всех строго σ -субнормальных подгрупп, перестановочных с холловой Π -подгруппой конечной группы G , образует подрешётку решётки всех подгрупп $L(G)$ группы G .

Ключевые слова: конечная группа, решётка подгрупп, группа операторов, подрешётка решётки, холлова Π -подгруппа.

Для цитирования: Косенок, Н.С. Об одном классе подрешёток решётки подгрупп конечной группы / Н.С. Косенок, И.В. Близнец // Проблемы физики, математики и техники. – 2025. – № 4 (65). – С. 72–74. – DOI: https://doi.org/10.54341/20778708_2025_4_65_72. – EDN: KEQNCF

Abstract. In this paper: G is a finite group; $\sigma = \{\sigma_i \mid i \in I\}$ is some partition of the set of all primes \mathbb{P} ; $\Pi \subseteq \sigma$; $\sigma(n) = \{\sigma_i \mid \sigma_i \cap \pi(n) \neq \emptyset\}$ (n is an integer) and $\sigma(G) = \sigma(|G|)$. A group G is said to be: (i) σ -primary provided G is a σ_i -group for some $i \in I$; (ii) σ -nilpotent if G is the direct product of σ -primary groups; a Π -group if $\sigma(G) \subseteq \Pi$. A subgroup A of a finite group G is said to be: (i) σ -subnormal in G if there is a subgroup chain $A = A_0 \leq A_1 \leq \dots \leq A_t = G$ such that either $A_{i-1} \trianglelefteq A_i$ or $A_i / (A_{i-1})_{A_i}$ is σ -primary for all $i = 1, \dots, t$; (ii) a Hall Π -subgroup of G if A is a Π -group and $\sigma(|G:A|) \cap \Pi = \emptyset$. We say that a subgroup H of G is strongly σ -subnormal if H^G / H_G is σ -nilpotent. In this paper, we prove that the set of all strongly σ -subnormal subgroups which permute with a Hall Π -subgroup of a finite group G forms a sublattice of the lattice of all subgroups $L(G)$ of G .

Keywords: finite group, lattice of subgroups, operator group, sublattice of a lattice, Hall Π -subgroup.

For citation: Kosenok, N.S. On a class of sublattices of the subgroup lattice of a finite group / N.S. Kosenok, I.V. Blisnets // Problems of Physics, Mathematics and Technologies. – 2025. – № 4 (65). – P. 72–74. – DOI: https://doi.org/10.54341/20778708_2025_4_65_72. – EDN: KEQNCF

Introduction

Throughout this paper, all groups are finite and G always denotes a finite group. Moreover, \mathbb{P} is the set of all primes and $\sigma = \{\sigma_i \mid i \in I\}$ is some partition of \mathbb{P} ; $\Pi \subseteq \sigma$ and $\Pi' = \sigma \setminus \Pi$.

If n is an integer, the symbol $\pi(n)$ denotes the set of all primes dividing n ; as usual, $\pi(G) = \pi(|G|)$, the set of all primes dividing the

order of G ; $\sigma(n) = \{\sigma_i \mid \sigma_i \cap \pi(n) \neq \emptyset\}$ and $\sigma(G) = \sigma(|G|)$ [1]–[4].

A σ -property of a group [1]–[4] is understood to be any of its properties that depends on σ and which does not imply any restrictions on σ .

Before continuing, let us recall some of the most important concepts of the theory of σ -properties of a group.

A group G is said to be [1]–[4]:

- (i) σ -primary if G is a σ_i -group for some $i \in I$;
- (ii) σ -nilpotent if G is the direct product of σ -primary groups;

A subgroup A of G is said to be [1]–[4]:

- (i) σ -subnormal in G if there is a subgroup chain

$$A = A_0 \leq A_1 \leq \cdots \leq A_n = G$$

such that either $A_{i-1} \trianglelefteq A_i$ or $A_i / (A_{i-1})_{A_i}$ is σ -primary for all $i = 1, \dots, n$;

(ii) σ -permutable in G provided G is σ -full, that is, G has a Hall σ_i -subgroup for all $i \in I$ and A permutes with all Hall σ_i -subgroups of G for all i .

We use H^G to denote the *normal closure* of the subgroup H in G (so H^G is the intersection of all normal subgroups of G containing H), and H_G is the *core* of H in G , that is, the subgroup of H generated by all normal subgroups of G contained in H .

Let us recall that a subgroup H of G is *strongly σ -subnormal* in G [6] if H^G / H_G is σ -nilpotent.

If $\sigma(H) \subseteq \Pi$, then H is called a Π -subgroup of G . A Π -subgroup H of G is called a *Hall Π -subgroup* of G if $\sigma(|G : H|) \cap \Pi = \emptyset$.

In this paper, we prove the following result.

Theorem 0.1. *Let G be a group. If H is a Hall Π -subgroup of G , then the set of all strongly σ -subnormal subgroups of G which permute with H forms a sublattice in $\mathcal{L}(G)$.*

Taking in Theorem 0.1 $H = G$, we get from this theorem the following two results.

Corollary 0.2 (A.N. Skiba [6]). *The set of all strongly σ -subnormal subgroups of G forms a sublattice in $\mathcal{L}(G)$.*

Corollary 0.3. *Let G be a group. If H is a Hall Π -subgroup of G , then the set of all strongly σ -subnormal subgroups of G which permute with H forms a sublattice in $\mathcal{L}(G)$.*

Let us recall that G is said to be: (i) a D_π -group if G possesses a Hall π -subgroup E and every π -subgroup of G is contained in some conjugate of E ; (ii) a σ -full group of Sylow type [2] if every subgroup E of G is a D_{σ_i} -group for every $\sigma_i \in \sigma(E)$.

In view of [8, Theorem 1.2.14], every Sylow permutable subgroup of G is strongly subnormal in G . On the other hand, if G is a σ -full group of Sylow type, then every σ -permutable subgroup is strongly σ -subnormal in G by Theorem B in [2]. Therefore, since the intersection of any set of sublattices of a lattice is a sublattice of this lattice, we also get from Theorem 0.1 the following two known results.

Corollary 0.4 (Kegel [9]). *The set of all Sylow permutable subgroups of G forms a sublattice in $\mathcal{L}(G)$.*

Corollary 0.5 (A.N. Skiba [2]). *If G is a σ -full group of Sylow type, then the set of all σ -permutable subgroups of G forms a sublattice in $\mathcal{L}(G)$.*

1 Lemmas used

Lemma 1.1 (A.N. Skiba [2]). *The class \mathfrak{N}_σ , of all σ -nilpotent groups, is a hereditary Fitting formation.*

Lemma 1.2 [5, Ch. A, Proposition 1.6]. *Let A, B and H be subgroups of G . If $AH = HA$ and $BH = HB$, then $\langle A, B \rangle H = H \langle A, B \rangle$.*

We use $O^\Pi(G)$ to denote the subgroup of G generated by all its Π' -subgroups, where $\Pi' = \sigma \setminus \Pi$; $O_\Pi(G)$ is the product of all normal Π -subgroups of G .

Lemma 1.3 (A.N. Skiba [2, Lemma 2.6]). *If A is σ -subnormal in G and $\sigma(|G : A|) \subseteq \Pi$ -number, then $O^\Pi(A) = O^\Pi(G)$.*

2 Proof of Theorem 0.1

Proof. Let us assume that this theorem is false and let G be a counterexample of minimal order.

Let \mathcal{L} be the set of all strongly σ -subnormal subgroups L of G which permute with H .

Let $A, B \in \mathcal{L}$ and let $K = \langle A, B \rangle$, $V = A \cap B$.

First we show that K is strongly σ -subnormal in G . By hypothesis, A^G / A_G is σ -nilpotent. Therefore, in view of the isomorphisms

$$\begin{aligned} A^G (A_G B_G) / A_G B_G &\simeq A^G / (A^G \cap A_G B_G) = \\ &= A^G / A_G (A^G \cap B_G) \simeq \\ &\simeq (A^G / A_G) / (A_G (A^G \cap B_G) / A_G), \end{aligned}$$

we get that

$$A^G (A_G B_G) / A_G B_G \in \mathfrak{N}_\sigma$$

since the class \mathfrak{N}_σ is closed under taking homomorphic images by Lemma 1.1.

Similarly, we can get that

$$B^G (A_G B_G) / A_G B_G \in \mathfrak{N}_\sigma.$$

Moreover,

$$\begin{aligned} A^G B^G / A_G B_G &= \\ &= (A^G (A_G B_G) / A_G B_G) (B^G (A_G B_G) / A_G B_G) \end{aligned}$$

and so, we have

$$A^G B^G / A_G B_G \in \mathfrak{N}_\sigma$$

since the class \mathfrak{N}_σ is a Fitting formation by Lemma 1.1.

Next note that $\langle A, B \rangle^G = A^G B^G$ and $A_G B_G \leq \langle A, B \rangle_G$. Therefore we get that

$$\langle A, B \rangle^G / \langle A, B \rangle_G \in \mathfrak{N}_\sigma$$

since the class \mathfrak{N}_σ is closed under taking homomorphic images by Lemma 1.1. Hence $\langle A, B \rangle$ is strongly σ -subnormal in G .

Moreover, in view of Lemma 1.2,

$\langle A, B \rangle H = H \langle A, B \rangle$
since $AH = HA$ and $BH = HB$ by the choice of A and B . Therefore $K \in \mathcal{L}$.

Now we show that $V \in \mathcal{L}$. First note that

$$(A \cap B)_G = A_G \cap B_G.$$

On the other hand, from the isomorphism

$$\begin{aligned} (A^G \cap B^G) / (A_G \cap B_G) &= \\ &= (A^G \cap B^G) / (A_G \cap B^G \cap A^G) \simeq \\ &\simeq A_G (B^G \cap A^G) / A_G \leq A^G / A_G \end{aligned}$$

we get that

$$(A^G \cap B^G) / (A_G \cap B_G) \in \mathfrak{N}_\sigma$$

since the class \mathfrak{N}_σ is closed under taking normal subgroup by Lemma 1.1. Similarly, we get that

$$(B^G \cap A^G) / (B_G \cap A^G) \in \mathfrak{N}_\sigma.$$

But then we get that

$$(A^G \cap B^G) / (A_G \cap B_G) \in \mathfrak{N}_\sigma$$

since the class \mathfrak{N}_σ is a formation by Lemma 1.1.

It is also clear that

$$(A \cap B)^G \leq A^G \cap B^G.$$

Therefore we get that

$$(A \cap B)^G / (A \cap B)_G \in \mathfrak{N}_\sigma.$$

Therefore $A \cap B$ is strongly σ -subnormal in G .

Finally, we show that $V = A \cap B$ is permutable with H . Let us assume that this is false. Then G is not a Π -group, since otherwise we have $H = G$ and so

$$G = (A \cap B)H = H(A \cap B).$$

First, let us assume that $R := (A \cap B)_G \neq 1$. Then

$(A/R)^G / (A/R)_G = (A^G / R) / (A_G / R) \simeq A^G / A_G$ is σ -nilpotent, so A/R is strongly σ -subnormal in G/R . Similarly, B/R is strongly σ -subnormal in G/R . It is also clear that HR/R is a Hall Π -subgroup of G/R and A/R and B/R permute with HR/R , so the choice of G implies that

$$\begin{aligned} ((A \cap B)/R)(HR/R) &= \\ &= ((A/R) \cap (B/R))(HR/R) = \\ &= (HR/R)((A/R) \cap (B/R)) = \\ &= (HR/R)((A \cap B)/R). \end{aligned}$$

But then

$(A \cap B)H = (A \cap B)HR = HR(A \cap B) = H(A \cap B)$, which is a contradiction.

Thus, $(A \cap B)_G = 1$, so $(A \cap B)^G$ is σ -nilpotent and hence $(A \cap B)^G = V \times W$, where W is a Hall Π -subgroup of $(A \cap B)^G$. Then $W \leq H$. It is also clear that $A \cap B = L \times K$, where K is a Hall Π -subgroup of $A \cap B$ and that $K \leq H$. Moreover,

$$L = O^\Pi(A \cap B) = O_{\Pi'}(A \cap B).$$

Now we show that $H \leq N_G(L)$. Indeed, we have $H \leq N_G(O^\Pi(A))$ and $H \leq N_G(O^\Pi(B))$ by Lemma 1.3, so $H \leq N_G(O^\Pi(A) \cap O^\Pi(B))$.

Now observe that $O^\Pi(A) \cap O^\Pi(B)$ is normal in $A \cap B$ and from

$$(A \cap B) / (A \cap O^\Pi(A) \cap B) \simeq (A \cap B)O^\Pi(A) / O^\Pi(A)$$

and

$$(A \cap B) / (B \cap O^\Pi(B) \cap A) \simeq (A \cap B)O^\Pi(B) / O^\Pi(B)$$

we get that

$$\begin{aligned} (A \cap B) / (O^\Pi(A) \cap O^\Pi(B)) &= \\ &= (A \cap B) / ((A \cap O^\Pi(A) \cap B) \cap (B \cap O^\Pi(B) \cap A)) \end{aligned}$$

is a Π -group. Hence

$$\begin{aligned} L &= O_{\Pi'}(A \cap B) = O_{\Pi'}(O^\Pi(A) \cap O^\Pi(B)), \\ \text{so } H &\leq N_G(L). \end{aligned}$$

Since $A \cap B = L \times K$, where $K \leq H$ and $H \leq N_G(L)$, we have

$$\begin{aligned} (A \cap B)H &= (L \times K)H = LH = HL = \\ &= H(L \times K) = H(A \cap B), \end{aligned}$$

a contradiction. Therefore $V \in \mathcal{L}$, so \mathcal{L} is a sublattice of the lattice $\mathcal{L}(G)$. \square

REFERENCES

1. Skiba, A.N. On σ -properties of finite groups I / A.N. Skiba // Problems of Physics, Mathematics and Technologies. – 2014. – № 4 (21). – P. 89–96.
2. Skiba, A.N. On σ -subnormal and σ -permutable subgroups of finite groups / A.N. Skiba // J. Algebra. – 2015. – № 436. – P. 1–16.
3. Skiba, A.N. A generalization of a Hall theorem / A.N. Skiba // J. Algebra Appl. – 2015. – Vol. 15, № 4. – P. 21–36.
4. Skiba, A.N. On Some Results in the Theory of Finite Partially Soluble Groups / A.N. Skiba // Commun. Math. Stat. – 2016. – № 4. – P. 281–309.
5. Doerk, K. Finite soluble groups / K. Doerk, T. Hawkes. – Berlin – New York: Walter de Gruyter, 1992.
6. Skiba, A.N. On sublattices of the subgroup lattice defined by formation Fitting sets / A.N. Skiba // J. Algebra. – 2020. – № 550. – P. 69–85.
7. Shemetkov, L.A. Formations of Algebraic Systems / L.A. Shemetkov, A.N. Skiba // Moscow: Nauka, 1989.
8. Ballester-Bolinches, A. Products of Finite Groups / A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad. – Berlin – New York: Walter de Gruyter, 2010.
9. Kegel, O.H. Sylow-Gruppen and Subnormalteilerendlicher Gruppen / O.H. Kegel // Math. Z. – 1962. – № 78. – P. 205–221.

The article was submitted 12.09.2025.

Информация об авторах

Косенок Николай Сергеевич – к.ф.-м.н., доцент
Близнец Игорь Васильевич – к.ф.-м.н., доцент