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Аннотация. Представлены результаты исследования влияния изменения диэлектрической проницаемости диэлектри-
ческих включений в сложно структурированных средах на их рассеивающие свойства в оптическом и СВЧ-диапазонах. 
Приведены зависимости коэффициентов прохождения и отражения электромагнитного поля от диэлектрической 
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Введение  
Получение материалов с изменяемыми фи-

зическими параметрами является одним из акту-
альных направлений в создании перестраивае-
мых технических устройств. Одним из способов 
изменения физических параметров материалов и 
систем является воздействие электромагнитных 
полей. При этом в сложно структурированных 
средах это позволяет эффективно использовать 
как свойства компонентов в отдельности, так и 
взаимосвязи их внутри системы. Разработка спо-
собов управления свойствами материалов явля-
ется актуальной задачей, обеспечивающей со-
вершенствование устройств микроволнового и 
оптического диапазонов [1]. 

Существуют следующие технологии управ-
ления свойствами материалов и систем, полу-
чившие наибольшее распространение: механиче-
ские, магнитные, электрические, оптические, 
термические. При этом каждая из них имеет свои 
ограничения и сложности в применении, такие 
как: сложность реализации однородности маг-
нитного поля в большом объеме или подмагни-
чивающих элементов, высокие управляющие 
напряжения, малая скорость перестройки, неста-
бильность по температуре, большое энергопо-
требление, сложность конструктивной реализа-
ции управляющих устройств, высокие стоимость 
и сложность конструктивных решений, низкая 
стойкость к механическим воздействиям, 
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ограниченное количество переключений, дребезг 
контактов, существование механических резо-
нансов и т. д.  

Управление свойствами материалов с ис-
пользованием электрического поля является од-
ним из наиболее перспективных вследствие наи-
меньшего количества недостатков. Данная тех-
нология подразумевает использование материа-
лов, обладающих изменяемыми параметрами в 
условиях воздействия электрических полей раз-
личных частотных диапазонов. Примером таких 
материалов могут быть материалы с дисперсией 
диэлектрической проницаемости, возникающей 
при помещении их в поля различной напряжен-
ности при определенных температуре, давлении 
и т. д. [2], [3]. 

Однако для такой технологии при измене-
нии свойств материалов характерно применение 
постоянных или переменных полей очень высо-
кой напряженности, что вызывает сложности в 
технической реализации. Вследствие вышеупо-
мянутого, разработка новых и усовершенствова-
ние существующих технологий управления явля-
ется актуальной задачей, решение которой по-
зволит улучшить параметры энергопотребления, 
быстродействия, эффективности, универсально-
сти и безопасности систем электродинамики. 

Проблему реализации управления электри-
ческими полями высокой напряженности можно 
решить использованием явления резонанса, по-
зволяющего уменьшить значения напряженности 
для изменения параметров материалов и систем. 
Так же это позволит упростить реализацию элек-
трической технологии управления, сделав ее 
энергетически более эффективной.  

Вопрос выбора материала и систем, для ко-
торых можно реализовать резонансное измене-
ние диэлектрической проницаемости, является 
актуальной задачей. Материалы, проявляющие 
поляризационные свойства за счет изменения 
внутренней структуры при воздействии внешне-
го электрического поля, являются перспектив-
ными при разработке новых методов управления 
электромагнитными параметрами систем. В ка-
честве примера таких материалов можно привес-
ти сегнетоэлектрики со значениями диэлектри-
ческой проницаемости свыше 100, обладающие 
доменной структурой и имеющие дисперсию 
диэлектрической проницаемости в электриче-
ских полях мегагерцового диапазона [1]–[4]. В то 
же время актуальна проблема создания материа-
лов с более низкими значениями диэлектриче-
ской проницаемости и способов управления их 
параметрами. 

В работе представлены результаты исследо-
вания взаимодействия электромагнитного поля 
СВЧ и оптического диапазонов со структурами 
из элементов с изменяемой диэлектрической 
проницаемостью. Перспективным является ис-
пользование композитных материалов на основе 

полимеров. Данные материалы характеризуются 
значениями диэлектрической проницаемости от 
2 до 120, а также обладают низким значением 
коэффициента поглощения для электромагнит-
ного поля сверхвысокочастотного и оптического 
диапазонов.  

Рассматривается возможность применения 
резонансного управления свойствами материалов 
для изменения характеристик рассеяния излуче-
ния СВЧ-диапазона на структурах с элементами 
из высокодобротного полимера [5]. Объектом 
исследования являются структуры на основе 
включений из материалов с перестраиваемой 
диэлектрической проницаемостью. Предметом 
исследования является влияние изменения ди-
электрической проницаемости композитных по-
лимерных включений периодических структур, а 
также геометрических размеров их компонентов 
на коэффициенты прохождения и отражения 
СВЧ-поля. 

 
1 Выбор материалов и методика построе-

ния периодических структур 
Для проведения исследования взаимодейст-

вия электромагнитного излучения со сложно 
структурированной средой методами численного 
моделирования была выбрана решетка, состоя-
щая из металлических лент с диэлектрическими 
вставками между ними. Диэлектрик размещается 
в зазорах между металлическими проводниками, 
расположенными параллельно друг другу. Вели-
чина зазора между металлическими проводника-
ми соответствует размеру диэлектрической 
вставки (рисунок 1.1). Пространство между ря-
дами проводников и диэлектрических включений 
заполнено материалом с диэлектрической ε и 
магнитной μ проницаемостями равными едини-
це, и не имеющим частотной дисперсии данных 
параметров во всем рассматриваемом частотном 
диапазоне (воздушная прослойка). 

Оценивалось влияние геометрических раз-
меров элементов решетки, диэлектрической про-
ницаемости и добротности диэлектрических 
вставок на коэффициенты прохождения и отра-
жения электромагнитного поля. 

 

 
 

Рисунок 1.1 – Модель фрагмента решетки  
 

В случае значений диэлектрической прони-
цаемости элементов решетки от 550 и выше 
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возникает большое количество собственных ре-
зонансов. Это обуславливает наличие резкого 
изменения коэффициентов прохождения и отра-
жения поля от 0,01 до 80 дБ во всем рассматри-
ваемом частотном диапазоне (1–10 ГГц), однако 
количество экстремумов коэффициентов и бли-
зость их расположения по частоте затрудняет 
реализацию управления рассеянием поля на ре-
шетках с указанными параметрами [6]. 

Более низкие значения диэлектрической 
проницаемости материала позволяют уменьшить 
количество собственных резонансов. При этом 
сохраняется возможность управления коэффици-
ентами прохождения и отражения в широком 
диапазоне значений.  

 
2 Моделирование взаимодействия излу-

чения СВЧ и оптического диапазонов с пе-
риодическими решетками из металлических и 
диэлектрических элементов 

Для создания модели периодической ре-
шетки взяты структуры на основе проводящих 
лент. Такие решетки удобны для оценки влияния 
конструктивных и материальных характеристик 
вследствие известной постановки задачи дифрак-
ции электромагнитного поля и ее решения [7], [8]. 

Численный эксперимент проводился с помо-
щью программного продукта CST MICROWAVE 
STUDIO,    который   позволяет   выполнять   

математическое моделирование высокочастотных 
устройств и рассеяние электромагнитного излу-
чения на объектах сложной формы и структуры. 

В ходе проведения численного моделирова-
ния варьировались следующие геометрические 
параметры элементов: длина, ширина, высота 
диэлектрических включений и металлических 
фрагментов в виде лент; расстояние между ряда-
ми лент (период решетки), диэлектрическая про-
ницаемость материала. Значение тангенса ди-
электрических потерь не превышало 10-3. Рас-
сматривался только случай нормального падения 
плоской электромагнитной волны на периодиче-
скую решетку. Направление распространения 
электромагнитного поля вдоль оси Z, а его элек-
трической компоненты вдоль оси X. Используе-
мый диапазон частот от 7 до 12 ГГц. Анализиро-
вались значения коэффициентов прохождения и 
отражения электромагнитного поля для TE и TM 
гармоник. 

Для выбора оптимальных размеров метал-
лических лент было проведено моделирование 
структуры с длинами лент в диапазоне от 15 до 
30 мм. Остальные параметры не изменялись и 
равнялись: диэлектрическая проницаемость 25; 
длина, ширина, высота диэлектрической вставки 
4 мм; период по оси Y 15 мм. Коэффициенты 
прохождения и отражения для TE и TM гармо-
ник представлены на рисунках 2.1–2.2. 

 

 
 
 

 
 
а) 

 

 
 
 
 
 
б) 

 
 

Рисунок 2.1 – Коэффициенты прохождения (а) и отражения (б) для TE гармоники 
при различных значениях длины ленты 
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б) 

 
 

Рисунок 2.2 – Коэффициенты прохождения (а) и отражения (б) для TМ гармоники 
при различных значениях длины ленты 
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Для ТЕ гармоники при увеличении длины 
характерно наличие нескольких минимумов в 
пределах 0,5 ГГц. При этом для всех значений 
длины минимальные значения наблюдаются в 
районе частоты 9–9,5 ГГц. Для ТМ гармоники 
расстояние между минимумами порядка 2,5–
3 ГГц, при этом они разнесены по частотному 
диапазону. Коэффициент отражения принимает 
максимальные значение на частотах, соответст-
вующих минимальным значениям коэффициента 
прохождения и принимает значения –75 – –65 дБ 
для ТЕ гармоники и до –60 дБ для ТМ гармоники. 

Изменение коэффициента отражения обу-
словлено наличием резонансного характера взаи-
модействия электромагнитного поля с решеткой. 
Наблюдаемые закономерности изменения коэф-
фициентов отражения и прохождения позволяют 
определить частоты, на которых решетка макси-
мально чувствительна к изменению диэлектри-
ческой проницаемости элементов.  

Исходя из результатов, была выбрана длина 
лент 15 мм, для которой наблюдался один мини-
мум коэффициента прохождения в диапазоне 
7,5–10 ГГц. 

Изменение расстояния между лентами по 
оси Y (периода) также оказывает влияние на кар-
тину рассеяния (рисунки 2.3, 2.4). 

 

Оптимальным расстоянием между лентами 
для дальнейшего моделирования выбрано 15 мм, 
так как увеличение периода сопровождается из-
менением частоты наблюдения минимума в сто-
рону более высоких частот и появлением допол-
нительных экстремумов. 

Исследование влияния изменения длины 
диэлектрической вставки (вдоль оси х) проводи-
лось при следующих постоянных параметрах: 
диэлектрическая проницаемость 20; ширина и 
высота диэлектрической вставки 4 мм; период по 
оси Y 15 мм, длина металлических лент 15 мм. 
Коэффициенты прохождения и отражения для TE 
и TM гармоник представлены на рисунках 2.5, 2.6. 

Изменение длины диэлектрических вставок 
влияет на частоту наблюдения минимумов коэф-
фициента прохождения. При этом для ТЕ гармо-
ники увеличение длины приводит к сдвигу ми-
нимума в сторону более низких частот, с 
11,3 ГГц для 2 мм до 8,1 ГГц для 15 мм. Для ТМ 
гармоники разброс по частоте присутствует, но 
зависимость уже не такая однозначная как для 
TE гармоники. Глубина минимумов коэффици-
ента прохождения для ТЕ гармоники составляет 
от –50 до –35 дБ, а для ТМ гармоники от –50 до  
–30 дБ. В обоих случаях коэффициент отражения 
максимален при минимальном коэффициенте 
прохождения и принимает значения до –60 дБ. 

 
 
 
 

 
 
а) 

 

 
 
 
 
 
б) 

 
 

Рисунок 2.3 – Коэффициенты прохождения (а) и отражения (б) для TE гармоники 
при различных значениях периода вдоль оси Y 
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Рисунок 2.4 – Коэффициенты прохождения (а) и отражения (б) для TМ гармоники 
при различных значениях периода вдоль оси Y 
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Рисунок 2.5 – Коэффициенты прохождения (а) и отражения (б) для TE гармоники 
при различных значениях длины диэлектрических вставок 

 

 
 
 

 
 
а) 

 

 
 
 
 
 
б) 

 
 

Рисунок 2.6 – Коэффициенты прохождения (а) и отражения (б) для TМ гармоники 
при различных значениях длины диэлектрических вставок 
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Рисунок 2.7 – Коэффициенты прохождения (а) и отражения (б) для TE гармоники 
при различных значениях ширины диэлектрических вставок 
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Рисунок 2.8 – Коэффициенты прохождения (а) и отражения (б) для TМ гармоники 

при различных значениях ширины диэлектрических вставок 
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Варьирование ширины диэлектрической 
вставки (вдоль оси Z) осуществлялось при со-
хранении следующих значений параметров 
структуры: диэлектрическая проницаемость 20; 
длина и высота диэлектрической вставки 4 мм; 
период по оси Y 15 мм, длина металлических 
лент 15 мм. Коэффициенты прохождения и от-
ражения для TE и TM гармоник представлены на 
рисунках 2.7, 2.8. 

При изменении ширины диэлектрических 
элементов решетки, а, следовательно, и расстоя-
ния между металлическими лентами, для ТЕ 
гармоники также наблюдается сдвиг максимумов 
по частоте, только в сторону более высоких час-
тот с 9,8 ГГц до 10,8 ГГц. Для ТМ гармоники 
сдвиг по частоте присутствует, но максимумы 
находятся как на более низких, так и на более 
высоких частотах по сравнению с частотой для 
ширины, равной 2 мм. Глубина минимума при-
нимает значения от –53 до –40 для ТЕ гармоники 
и от –75 до –60 для ТМ гармоники. В обоих слу-
чаях наблюдается соответствие максимальных 
значений коэффициента отражения на частотах 
минимальных значений коэффициента прохож-
дения. Для ТЕ гармоники значение коэффициен-
та отражения до –70 дБ, а для ТМ – до –45 дБ. 

Изменение высоты диэлектрических вста-
вок (вдоль оси Y), а, следовательно, и высоты 

лент, также оказывает влияние на расположение 
и глубину минимумов коэффициента прохожде-
ния (рисунки 2.9, 2.10). 

Коэффициент прохождения для ТЕ гармо-
ники сдвигается по частоте как в сторону более 
низких, так и более высоких частот. Также на-
блюдаются дополнительные минимумы вблизи 
основных максимумов для высоты элементов 
10 мм. Для ТМ гармоники в данном случае одно-
значно можно видеть сдвиг минимумов в сторо-
ну более низких частот. При этом дополнитель-
ные минимумы вблизи основных максимумов 
отсутствуют. Изменение коэффициента прохож-
дения находится в диапазоне до –45 – –30 дБ для 
ТЕ гармоники и –75 – –70 для ТМ гармоники. 
Коэффициент отражения для ТЕ гармоники не 
менее –70 дБ, а для ТМ – до –60 дБ. 

Исходя из вышеприведенного, для даль-
нейшего исследования влияния изменения ди-
электрической проницаемости материалов на 
рассеяние электромагнитного излучения были 
выбраны следующие габаритные размеры перио-
дической структуры: длина лент 15 мм, период 
по оси у 15 мм, длина, ширина, высота диэлек-
трического элемента 4 мм.  

Рассматривалось влияние изменения ди-
электрической проницаемости элементов решет-
ки с 2 до 140 на картину рассеивания. 

 
 
 
 

 
 
а) 

 

 
 
 
 
 
б) 

 
 

Рисунок 2.9 – Коэффициенты прохождения (а) и отражения (б) для TE гармоники 
при различных значениях высоты диэлектрических вставок 
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Рисунок 2.10 – Коэффициенты прохождения (а) и отражения (б) для TМ гармоники 
при различных значениях высоты диэлектрических вставок 
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Изменение диэлектрической проницаемости 
от 2 до 10 для ТЕ гармоники не приводит к появ-
лению минимумов коэффициента прохождения. 
Его значения не опускаются ниже –1 дБ. При 
этом для ТМ гармоники при диэлектрической 
проницаемости равной 2, коэффициент прохож-
дения плавно изменяется от –8 дБ до –0,2дБ на 
частотах от 7 до 9,5 ГГц, и затем остается посто-
янным. Для диэлектрической проницаемости 5 и 
10 наблюдаются минимумы коэффициента про-
хождения на частотах 7,6 ГГц и 8,5 ГГц соответ-
ственно. 

Зависимости коэффициентов прохождения 
и отражения от частоты для значений диэлектри-
ческой проницаемости 2, 20 и 40 для ТЕ гармо-
ники и 10, 20, 30 для ТМ гармоники приведены 
на рисунках 2.11, 2.12.  

Изменение значений диэлектрической про-
ницаемости приводит к появлению минимумов 
коэффициентов прохождения для ТЕ и ТМ гар-
моник. При этом минимумы наблюдаются на 
различных частотах. Коэффициент отражения 
имеет максимальное значение на частотах на-
блюдения минимумов прошедшего поля. Мини-
мальные значения коэффициента отражения  
–70дБ для ТЕ гармоники, и –60 дБ для ТМ гар-
моники. 

При увеличении диэлектрической прони-
цаемости до 90 для ТЕ гармоники наблюдается 
резко выраженный один минимум коэффициента 
прохождения (рисунок 2.13). В то же время для 
ТМ гармоники в рассматриваемом диапазоне 
характерно наличие большего числа экстрему-
мов коэффициентов прохождения и отражения. 
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Рисунок 2.11 – Коэффициенты прохождения (а) и отражения (б) для TE гармоники 
при различных значениях диэлектрической проницаемости вставок 
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Рисунок 2.12 – Коэффициенты прохождения (а) и отражения (б) для TМ гармоники 
при различных значениях диэлектрической проницаемости вставок 
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Рисунок 2.13 – Коэффициенты прохождения (а) и отражения (б) для TE гармоники 
при значениях диэлектрической проницаемости вставок 50, 70, 90 
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Рисунок 2.14 – Коэффициенты прохождения (а) и отражения (б) для TЕ гармоники 
при значениях диэлектрической проницаемости вставок 2, 25, 40 
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Рисунок 2.15 – Коэффициенты прохождения (а) и отражения (б) для TМ гармоники 
при значениях диэлектрической проницаемости вставок 2, 15, 40 

 
При дальнейшем увеличение значений ди-

электрической проницаемости, для ТЕ гармони-
ки происходит смещение глубоких минимумов 
в сторону более высоких частот, начиная с 
10,5 ГГц. Для ТМ гармоники наблюдается боль-
шое число минимумов, глубина которых до –50 дБ. 

Полимерные материалы за счет своих 
свойств используются для создания покрытий с 
требуемыми селективно-частотными свойствами. 
В частности, композиты с добавлением прово-
дящих или иных наполнителей, где свойства из-
меняются как по толщине, так и по площади по-
верхности материала. Некоторые технические 
приложения требуют использования тонких ме-
таллических слоев для создания градиентов и 
неоднородностей диэлектрической проницаемости. 

Сочетание материалов позволяет создать 
гладкие градиентные покрытия, отличающиеся 
широким рабочим диапазоном в случае правиль-
ного подбора электромагнитных параметров. 
Эффективность взаимодействия структуры с из-
лучением определяется подстройкой электро-
магнитных параметров материалов ее элементов. 
Толщина слоя с градиентом изменения парамет-
ров выбирается в зависимости от рабочей длины 
волны. Таким образом, однотипные структуры 
могут использоваться в различных частотных 
диапазонах с соответствующим приведением их 
габаритных размеров. 

В оптическом диапазоне при изменении ди-
электрической проницаемости материала в тех 
же пределах также возможно использование ре-
шетки с полученными выше параметрами для 
управления коэффициентами прохождения и 
отражения излучения. Параметры решетки были 
адаптированы для видимого оптического диапа-
зона 480–530 ТГц и составили: длина, ширина и 
высота диэлектрической вставки 73 нм; длина 
ленты и период по оси Y 275 нм. 

На рисунке 2.14 показано влияние различ-
ных значений диэлектрической проницаемости 
вставок на уровень прошедшего и отраженного 
излучения для ТЕ гармоники. 

Для значений диэлектрической проницае-
мости равной 2 не наблюдается изменений ко-
эффициентов прохождения и отражения в рас-
сматриваемом частотном диапазоне. При увели-
чении диэлектрической проницаемости для ТЕ 
гармоники картина рассеяния изменяется. Таким 
образом, для коэффициента прохождения суще-
ствует возможность изменения до –50 дБ. При 
этом, коэффициент отражения принимает значе-
ния до –50дБ. 

Для ТМ гармоники (рисунок 2.15) минимум 
коэффициента прохождения наблюдается для 
значения диэлектрической проницаемости 40 на 
частоте 509 ТГц.  
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Варьирование диэлектрической проницае-
мости приводит к перестройке значений мини-
мумов и максимумов коэффициентов прохожде-
ния и отражения по частоте и глубине, как для 
ТЕ, так и для ТМ гармоники. Таким образом, 
рассматриваемая структура может использовать-
ся для управления рассеянием излучения как в 
сверхвысокочастотном, так и оптическом диапа-
зонах. 

 
Заключение 
Изменение характеристик рассеяния элек-

тромагнитного излучения на приведенных пе-
риодических структурах может быть осуществ-
лено путем изменения диэлектрической прони-
цаемости элементов решеток. Это является более 
перспективным по сравнению с механической 
перестройкой структуры. 

Оптимальные размеры периодической 
структуры для проведения натурного экспери-
мента по оценке влияния изменения материаль-
ных параметров элементов решеток на характе-
ристики рассеяния электромагнитного поля оп-
тического и СВЧ-диапазона зависят от электро-
магнитных параметров используемых материа-
лов и частоты облучающего поля.  

В качестве диэлектриков с изменяемым ко-
эффициентом диэлектрической проницаемости 
могут выступать композитные материалы на ос-
нове поливинилового спирта с сегнетоэлектриче-
скими включениями, а также включениями раз-
личных материалов. Изменение диэлектрической 
проницаемости композитного материала воз-
можно при условии его размещения в электриче-
ском поле. Локальное управление диэлектриче-
ской проницаемостью элементов решетки при 
минимальных напряженностях управляющих 
электрических полей эффективно при условии 
минимизации зазоров, в которых эти поля лока-
лизованы и являются однородными. Так же это 
позволяет разработать энергетически эффектив-
но перестраиваемые структуры. 

Описанные технологические решения по-
зволят использовать решетку с приведенной 
конфигурацией в качестве чувствительного ин-
струмента для идентификации наличия измене-
ния диэлектрической проницаемости материала 
элементов решетки при воздействии внешних 
полей малой напряженности. 
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