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Аннотация. Рассматривается постановка диагноза «остеохондроз» поясничного отдела на основании измерения  
межпозвонковых расстояний на рентгеновских снимках в поясничном отделе. Для более точной диагностики 
и автоматизации предлагается комплекс методов математического анализа данных, позволяющих во множестве 
снимков пациентов и соответствующих измерений межпозвонковых расстояний отделить здоровых пациентов, 
заболевших и пограничные случаи заболевания. 
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Abstract. The diagnosis of lumbar osteochondrosis based on measurement of intervertebral distances on lumbar x-rays 
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Введение  
Точный анализ и правильная обработка ре-

зультатов рентгенологических исследований по-
зволяют эффективно выделять патологические 
состояния и процессы. Проблему повышения 
качества диагностирования требуется решать на 
всех этапах распознавания изображений: сегмен-
тации, выделении и анализе объектов, парамет-
рическом описании, классификации [1]. Форму 
позвоночника определяют множество характери-
стик, таких как наличие или отсутствие отклонения 

позвоночного столба или его отделов вперед или 
назад относительно положения вертикальной 
линии, а также степень выраженности естествен-
но существующих изгибов. Большое количество 
параметров, требуемых для объективной оценки 
состояния позвоночника, делает процесс их вы-
числения очень трудоемким [2]. 

Вопросы повышения эффективности приня-
тия решений о диагностике и лечении различных 
заболеваний с применением информационных 
систем решаются на основе табличных методов 

ИНФОРМАТИКА
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формализации алгоритмов принятия решения, 
методов логического проектирования, а также 
нейросетевых методов обработки изображений и 
машинного обучения [3]–[6]. Однако все сущест-
вующие средства автоматизации диагностики 
имеют узкую специализацию и не могут приме-
няться для оценки состояния позвоночника без 
существенной модификации.  

Несмотря на все более широкое использо-
вание компьютерной томографии (КТ) и магнит-
но-резонансной томографии (МРТ) при изучении 
заболеваний позвоночника, рентгенография по-
прежнему играет важную роль при многих забо-
леваниях, поражающих позвоночник. Разработа-
ны показания к рентгенографии при различных 
патологических состояниях, которые поражают 
позвоночник, включая врожденные, травматиче-
ские, дегенеративные, воспалительные, инфек-
ционные и опухолевые заболевания [7]. Для по-
строения моделей радиомики (извлечение коли-
чественных характеристик из медицинских изо-
бражений) использовались алгоритмы логисти-
ческой регрессии, алгоритмы машинного обуче-
ния для классификации и регрессии, и др. [8]. 
Для уменьшения размерности данных и выделе-
ния признаков была применена многомерная 
логистическая регрессия при построении комби-
нированной клинико-радиомической модели, 
включающей радиомикроскопические признаки 
и клинические характеристики [9]. 

 
1 Материалы и методы  
 

 
 

Рисунок 1.1 – Измерение расстояний между  
1 и 2, 2 и 3, 3 и 4, 4 и 5 позвонками 

 

В настоящей работе рассматривается ком-
плексное применение методов кластерного ана-
лиза и нейросетевой модели в процессе поста-
новки диагноза «остеохондроз» поясничного 
отдела на основании измерения расстояний на 
рентгеновских снимках между 1 и 2 позвонком, 2 
и 3, 3 и 4, 4 и 5 в поясничном отделе. Далее для 
краткости расстояние между 1 и 2 позвонком 
обозначим «1 позвонок», между 2 и 3 – «2 позво-
нок», между 3 и 4 – «3 позвонок», между 4 и 5 – 
«4 позвонок». При постановке диагноза эксперт-
диагност руководствуется наличием последова-
тельного возрастания расстояний между рас-
сматриваемыми позвонками поясничного отдела.  

В результате работы рентген-кабинета на-
коплено определенное количество снимков, по 
каждому из которых измерены расстояния  
«1 позвонок», …, «4 позвонок» (рисунок 1.1), 
известны диагнозы пациентов.  
Для формирования групп пациентов со сходны-
ми признаками заболевания или их отсутствием 
применены методы кластерного анализа много-
мерных данных. 

 
2 Анализ методов кластеризации 
Описание методов кластеризации данных 

достаточно широко отражено в различных ис-
точниках [10]–[13]. Большинство алгоритмов, 
при всём их разнообразии, основано на гипотезе 
компактности, состоящей в том, что объекты 
одного класса по результатам измерений близко 
расположены по отношению друг к другу, а объ-
екты разных классов заметно различаются между 
собой. 

Методы разбиения множеств на кластеры 
можно разделить на иерархические (подразделя-
ют на агломеративные: Tree Clastering, CURE, 
CACTUS и дивизимные: Смита Макнаотона и 
Кауфмана – Роузеува) и неиерархические (под-
разделяют на сравнение по статистикам: EM 
(Expectation Maximization, Scalable EM и сравне-
ние по расстоянию, которые в свою очередь раз-
деляют на сравнение по расстоянию до центра 
кластера: семейство K-Means и на сравнение по 
расстоянию между образцами: Fuzzy Relation 
Clustering)). Семейство K-Means в свою очередь 
подразделяют на числовые: K-Means (Hard 
C-Means), Scalable K-Means, Fuzzy C-Means, 
Гюстафсона-Кесселя; категорийные: K-Modes; 
смешанные: K-prototypes. Для исследования ото-
браны методы кластеризации Fuzzy Relation 
Clustering, Tree Clustering, Fuzzy C-Means, EM 
(Expectation Maximization), Смита Макнаотона, 
которые являются представителями основных 
видов методов кластеризации для разделения 
множества исследуемых данных. 

Метод нечеткого кластерного анализа Fuzzy 
Relation Clustering (FRC) имеет следующие осо-
бенности: не требует охвата каждого кластера 
отдельным выпуклым множеством, т. е. 
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не накладывает ограничения на геометрическую 
форму кластеров.  

Метод нечеткого кластерного анализа Fuzzy 
C-Means является представителем семейства не-
иерархических методов кластерного анализа 
группы K-Means и, следовательно, накладывает 
ограничения на геометрию кластеров, требуя 
охвата каждого кластера отдельным выпуклым 
множеством. Трудоемкость метода меньше тру-
доемкости метода нечеткого кластерного анализа 
Fuzzy Relation Clustering (FRC) и, следовательно, 
скорость работы Fuzzy C-Means превысит ско-
рость работы FRC на больших объёмах данных  

Метод кластерного анализа Tree Clustering 
является представителем группы иерархических 
агломеративных методов. Скорость работы ме-
тода по сравнению с Fuzzy C-Means и FRC более 
выигрышна, точность работы метода сравнима с 
Fuzzy Relation Clustering.  

Метод ожидания-максимизации EM – это 
неиерархический алгоритм кластеризации, осно-
ванный на статистических методах, который 
предполагает, что данные можно представить как 
линейную комбинацию многомерных нормаль-
ных распределений. Преимущества EM-
алгоритма включают эффективную обработку 
больших данных, устойчивость к шумам и про-
пускам, возможность создания заданного числа 
кластеров и быструю сходимость при удачной 
инициализации. 

Алгоритм максимального локального рас-
стояния, предложенный британским ученым 
Смитом Макнаотоном, рассматривает каждый 
объект как отдельный кластер. Объекты объеди-
няются в один кластер, если максимальное ло-
кальное расстояние между кластерами мини-
мально. Алгоритм основан на подходе, который 
минимизирует максимальное расстояние между 
объектами разных кластеров, обеспечивая фор-
мирование групп на основе наименьшего макси-
мального расстояния между элементами. Пре-
имущества алгоритма включают возможность 
обрабатывать разнородные данные, минимизи-
ровать межкластерные расстояния и обеспечи-
вать более компактные кластеры в сравнении с 
другими методами кластеризации. 

 
3 Постановка задачи кластеризации 
Предлагается комплексное применение 

, 3L L   методов кластерного анализа, позво-

ляющее учесть и обобщить достоинства выбран-
ных методов. 

На вход каждого из выбранных методов 
кластерного анализа подаются многомерные дан-
ные (вектора действительных чисел – данные 
пациентов, количественные данные) вида  

 { | , 1, ..., }, 3n
i iX x x R i m m          (3.1) 

и также качественные данные – информация о 
пациентах (шифровки, означающие наименование, 

код пациента), управляющие параметры методов. 
Например, необходимым параметром методов 
кластерного анализа группы K-Means является 
параметр k – количество кластеров (задаваемое 
исследователем-экспертом), которое необходимо 
построить в результате кластеризации. Для более 
точной идентификации кластеров предлагается 
указание контрольных точек (КТ) кластеров (за-
даваемое исследователем-экспертом).  

В результате разбиения множества X на кла-
стеры каждый метод кластерного анализа ставит 
в соответствие номерам 1, ,  i m   элементов ix  

соответствующие им номера кластеров 
, 1, ,  Kj  j k  , где k – количество построенных 

кластеров. В идеальном случае результаты рабо-
ты всех методов кластерного анализа совпадают. 

 
4 Решение задачи комплексной кластери-

зации в общем виде 
Утверждение 1. Результат кластеризации 

многомерного множества X для каждого из ме-
тодов кластеризации 1 2, , ..., LM M M  может быть 

представлен в виде матрицы вероятностей при-
надлежности объектов , 1, ..., | |rb B r B   опре-

деленным кластерам:  
|| ||, [0,1], 1, .., , 1, ..., .l lrj lrj lP p p l L j k    (4.1) 

Определение 1. Объект rb B  является эле-

ментом определённого кластера , 1, ,  jK  j k   

тогда и только тогда, когда он отнесен к данному 
кластеру, по крайней мере, *L  из L выбранных 
методов кластерного анализа, причём * ,LE L L   

3L  , пороговое значение LE определяется экс-
пертом. 

Утверждение 2. Пусть 1 2, , ..., LP P P  – мат-

рицы вида (4.1) вероятностей принадлежности 
объектов , 1, ..., | |rb B r B   определенным кла-

стерам , 1, ,  ,jK  j k   согласно методам класте-

ризации 1 2, , ..., LM M M  соответственно. 

Методика определения кластеров объектов 
состоит из нескольких этапов. 

Этап 1. Кластеризация множества X мето-
дами , 1, ..., .lM l L  Интерпретация результатов 

кластеризации; подготовка к этапу обобщения. 
Этап 2. Обобщение результатов кластери-

зации. Определение кластеров объектов.  
Пусть Экспертом заданы следующие до-

полнительные начальные условия кластеризации 

:nX R  
1)   – предполагаемое количество класте-

ров , 1, , ;jK  j     

2) Y – множество контрольных точек кла-
стеров: 

{ | , 1, ..., }, , .n
j jY y y R j Y X         (4.2) 
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Обозначим через EP  – (эталонную, соглас-

но оценке Эксперта) матрицу вероятностей при-
надлежности контрольных точек (КТ) – началь-
ное условие кластеризации, определённое экс-
пертом; TP  – (тестируемую) матрицу вероятно-

стей принадлежности элементов множества X, 
соответствующих КТ, построенную по результа-
там кластеризации X методом .lM  

Определение 2. Перестановкой из элемен-
тов конечного множества I называется всякое 
упорядочивание элементов этого множества. 
Обозначим через ( )T tP I  матрицы, образованные 

из матрицы TP  перестановками tI  её столбцов 

1, , :j k   

0 1( ) , ( ), , ( ),T T T T tP I P P I P I   0, ... , ! 1,t k   

0 (1, 2, ... , ),I k  1 (2, 1, ... , ),I k  

 ,tI  0, ... , ! 1,t k                   (4.3) 

где t – номер выполненной перестановки tI  

столбцов матрицы ,TP  с целью задания порядка 

их следования, общее количество возможных пе-
рестановок k столбцов матрицы TP  составляет k!.  

Могут рассматриваться перестановки толь-
ко тех столбцов матрицы ,TP  которые не совпа-

дают со столбцами .EP  

Определение 3. Для матричных пар ( ( ), ),T t EP I P  

0, ! 1,t k   определяется метрика вида: 

1 1
( ( ), ) min( ( ), ),

B k
T t E Trj t Erjr j

P I P p I p
 

     

0, ! 1,t k                           (4.4) 

где ( )Trj tp I  – элементы матрицы ( )T tP I  со 

столбцами j, следующими в порядке, соответст-
вующем произведённой перестановке tI  столб-

цов матрицы ,TP  Erjp  – элементы матрицы .EP  

Метрика ( ( ), ) 0T t EP I P   позволяет опре-

делить меру совпадения элементов соответст-
вующих матриц. Значение   прямо пропорцио-

нально количеству общих элементов ix X  в 

кластерах матричной пары.  

Утверждение 3. Перестановка *I  столбцов 
матрицы TP  по отношению к матрице EP  опти-

мальна тогда и только тогда, когда выполняется 
условие 

*( ( ), )T EP I P   

max{ ( ( ), ) | 0, ..., ! 1},T t EP I P t k       (4.5) 

где   – метрика вида (4.4). 

Возвращаясь к прежним обозначениям, ре-
зультат упорядочивания столбцов TP  относи-

тельно эталонной матрицы EP   
*( ).T TP P I                        (4.6) 

 

На практике методы кластерного анализа 
могут применяться в следующей последователь-
ности:  

Шаг 1. Метод Tree Clustering строит денд-
рограмму, по которой Эксперт определяет необ-
ходимое количество кластеров k и их элементы, 
разрезая дендрограмму на определенном уровне 

, 0 1     (экспериментально изменяя уровень 

  до получения необходимого количества кла-
стеров). Определяются элементы кластеров. 

Шаг 2. Метод Fuzzy C-Means строит k кла-
стеров, определяются их элементы. 

Шаг 3. Применяется метод кластерного ана-
лиза Fuzzy Relation Clustering (FRC), в котором 
экспериментально изменяется уровень ,  
0 1    до получения необходимого количест-
ва кластеров. 

Шаг 4. Если результаты работы первых трех 
методов эквивалентны, процесс кластеризации 
завершается. Иначе – применяются последова-
тельно методы кластеризации Expectation 
Maximization (EM) и Кауфмана – Роузеува. 

Утверждение 4. Объект , 1, ..., | |rb B r B   

принадлежит кластеру 
0 0, {1, ..., }jK j k  тогда и 

только тогда, когда вероятность принадлежности 
объекта кластеру в r-й строке j обобщённой мат-
рицы P максимальна.  

Методы кластерного анализа присваивают 
номера построенным кластерам в произвольном 
порядке. Для более информативного описания 
кластеров и возможности присваивания им неко-
торых характеристик предлагается проведение 
качественного анализа для определения элемен-
тов, вошедших в данные кластеры, их особенно-
стей и причину включения в кластер.  

 
5 Определение оценочных характеристик 

для кластеров 
Предложена математическая модель опре-

деления возрастания расстояний между позвон-
ками – нейрон «возрастания» (перцептрон) с вы-
ходом Y: 

1 1 2 2 3 3 4 4 ,Y z w z w z w z w      (5.1) 

где входные значения , 1, ..., 4iz i   – не отрица-

тельные действительные числа – расстояния (ма-
тематические ожидания расстояний, полученных 
по четырем позвонкам) между 1 и 2, 2 и 3, 3 и 4, 
4 и 5 позвонками; , 1, ..., 4iw i   – весовые на-

грузки нейрона (веса синапсов), соответственно 

1 6,w    2 1,w   3 2,w   4 3.w   Если значения 

, 1, ..., 4iz i   возрастают (или, по крайней мере, 

не убывают), выход Y нейрона будет положи-
тельным. В противном случае, выход Y будет 
отрицательным. 

В таблице 5.1 приведен пример определения 
наличия возрастания расстояний между позвон-
ками.



Е.М. Борчик, Д.А. Якимов, А.Ю. Владова, О.М. Демиденко, М.В. Алексейков 
 

                 Проблемы физики, математики и техники, № 4 (65), 2025 112 

 
Таблица 5.1 – Определение наличия возрас-

тания расстояний между позвонками 
 

№ z1 z2 z3 z4 Y 
Пороговое  
значение 

Классификация 

1 1 1 1 1 0 1 0Y   Расстояния 
постоянны 

2 1 2 3 4 14 2 0Y   Возрастание 
расстояний 

3 5 4 3 2 –18 3 0Y   Убывание 
расстояний 

 
Ниже определяются выходные значения Y 

при входных 1 2 3 4( , , , ).z z z z  

Случай 1: 1 2 3 4( , , , )z z z z  = (1, 1, 1, 1),  

1Y  = –6·1 + 1·1 + 2·1 + 3·1 = 0. 

Классификация: 1 0,Y   значения 1 2 3 4, , ,z z z z  

постоянны – не убывают. 
Случай 2: 1 2 3 4( , , , )z z z z  = (1, 2, 3, 4),  

2Y  = –6·1 + 1·2 + 2·3 + 3·4 = 14. 

Классификация: 2 0,Y   имеет место возрас-

тание значений 1 2 3 4, , , .z z z z  

Случай 3: 1 2 3 4( , , , )z z z z  = (5, 4, 3, 2),  

3Y  = –6·5 + 1·4 + 2·3 + 3·2 = –18. 

Классификация: 3 0Y   – отрицательное 

значение, убывание значений 1 2 3 4, , , .z z z z  

 
6 Классификация остеохондроза 
В таблице 6.1 приведены нормированные 

значения (определены относительно максималь-
ного расстояния в исследуемой выборке) расстоя-
ний между 1 и 2 позвонком (1 позвонок, z1), …,  

4 и 5 позвонком (4 позвонок, z4) для 10 пациен-
тов a1, …, a10. Известны диагнозы пациентов Д1 – 
условно здоров, Д2 – патология (остеохондроз 
поясничного отдела позвоночника), Д3 – погра-
ничные состояния относительно диагноза остео-
хондроз. 

По результатам кластерного анализа с при-
менением комплекса из L = 5 методов определе-
ны кластеры (таблица 6.2), сгруппировавшие 
пациентов с близкими показателями расстояний 

1 2 3 4( , , , )z z z z  относительно диагноза остеохонд-

роз, значения метрик нейрон (5.1) возрастания и 
Евклидовой метрики. 

Ниже определяются выходные значения Y 
(5.1) при входных 1 2 3 4( , , , ).z z z z  

Случай 4: Входные (нормированные) значе-
ния 1 2 3 4( , , , )z z z z  – элемент (пациент) a7 (клас-

тер 1) – имеет место возрастание после 1 позвон-
ка, убывание после 2 позвонка, возрастание 
после 3 позвонка: 

1 2 3 4( , , , )z z z z  = (0,729; 0,928; 0,624; 0,635); 

Y4 = –6·0,729 + 1·0,928 + 2·0,624 + 3·0,635 = –0,293. 
Классификация: Отрицательное значение Y 

нейрона (5.1), убывание значений 1 2 3 4, , ,z z z z  – 

наличие патологии (остеохондроз крестцового 
отдела позвоночника, поскольку в кластере при-
сутствует элемент a7 с диагнозом Д2). 

Случай 5: Входные (нормированные) значе-
ния 1 2 3 4( , , , )z z z z  – кластер 2 с элементами a6, a9, 

a10 – (имеет место возрастание после 1, 2 позвон-
ков, убывание после 3 позвонка): 

1 2 3 4( , , , )z z z z  = (0,799; 0,838; 0,936; 0,915); 

Y5 = 0,659. 

 
Таблица 6.1 – Элементы исследуемой выборки 

 

Элементы 
выборки 

Диагноз 
1 позвонок, 

расстояния (z1) 
2 позвонок, 

расстояния (z2) 
3 позвонок, 

расстояния (z3) 
4 позвонок, 

расстояния (z4) 
a1 Д3 0,680 0,735 0,912 0,691 
a2 Д3 0,552 0,580 0,680 0,630 
a3 Д3 0,613 0,663 0,862 0,729 
a4 Д3 0,597 0,564 0,586 0,807 
a5 Д3 0,569 0,680 0,762 0,580 
a6 Д3 0,669 0,735 0,890 0,917 
a7 Д2 0,729 0,928 0,624 0,635 
a8 Д3 0,586 0,613 0,724 0,895 
a9 Д1 0,807 0,829 0,917 0,978 
a10 Д3 0,923 0,950 1,000 0,851 
 

Таблица 6.2 – Определение центров кластеров 
 

Элементы 
выборки 

z1 z2 z3 z4 Нейрон, Y 
Евклидова 

метрика 
Кластер Патология 

a7 0,729 0,928 0,624 0,635 –0,293<0 1,479min 1 + 
a6, a9, a10 0,799 0,838 0,936 0,915 0,659>0 1,748max 2 – 
a1–a5, a8 0,599 0,639 0,754 0,722 0,716>0 1,363 3 ± 
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Таблица 6.3 – Кластеры, построенные согласно диагнозам Д1, Д2, Д3 
 

Элементы 
выборки 

z1 z2 z3 z4 Нейрон, Y 
Евклидова 

метрика 
Кластер 

a7 0,729 0,928 0,624 0,635 –0,293 1,479min 1 
a9 0,807 0,829 0,917 0,978 0,757 1,771max 2 

a1–a6, a8, a10 0,648 0,690 0,802 0,762 0,690 1,456 3 
 

Классификация: Положительное значение Y 
нейрона (5.1), возрастание значений 1 2 3 4, , ,z z z z  – 

отсутствие патологии, поскольку в кластере при-
сутствует элемент a9 с диагнозом Д1.   

Случай 6: Входные (нормированные) значе-
ния 1 2 3 4( , , , )z z z z  – кластер 3 с элементами a1–a5, 

a8 (имеет место возрастание после 1, 2 позвон-
ков, убывание после 3 позвонка): 

1 2 3 4( , , , )z z z z  = (0,599; 0,639; 0,754; 0,722); 

Y6 = 0,716. 
Классификация: Положительное значение Y 

нейрона (5.1), возрастание значений 1 2 3 4, , ,z z z z  – 

пограничная ситуация относительно наличия 
либо отсутствия патологии, поскольку в кластере 
не присутствуют элементы a9, a7. Все пациенты 
кластера 3 имеют диагноз Д3. 

В таблице 6.3 приведены кластеры (сгруп-
пированы пациенты), построенные согласно ди-
агностики врачом. 

Кластер 1 (элемент а7) в таблицах 6.2 и 6.3 
совпадает, Y4 = –0,293. 

Кластер 2: Входные (нормированные) зна-
чения 1 2 3 4( , , , )z z z z  – элемент а9, имеет место 

возрастание расстояний 1 2 3 4, , , :z z z z  

1 2 3 4( , , , )z z z z  = (0,807; 0,829; 0,917; 0,978); 

Y7 = 0,757. 
Классификация: Положительное значение Y 

нейрона (5.1), возрастание значений 1 2 3 4, , , .z z z z  

Кластер 3: Входные (нормированные) зна-
чения 1 2 3 4( , , , )z z z z  – элементы a1–a6, a8, a10 

(имеет место возрастание после 1 – 3 позвонков): 

1 2 3 4( , , , )z z z z  = (0,648; 0,690; 0,802; 0,762), 

Y8 = 0,690. 
Классификация: Положительное значение Y 

нейрона (5.1), возрастание значений 1 2 3 4, , , .z z z z  

В таблице 6.4 представлены результаты ди-
агностики поликлиникой. 

 
Таблица 6.4 – Диагнозы пациентов а7, а9 

(контрольные точки кластеров) 
 

Нейрон, Y 
Классификация, 

элемент 

Заключение по-
ликлиники по 

пациентам 

Y4 = –0,293 < 0
Убывание 

расстояний, 
(патология), а7 

R-признаки  
межпозвонково-
го остеохондроза 

II степени 

Y7 = 0,757 > 0 

Возрастание 
Расстояний 
(отсутствие 

патологии), а9 

Минимальные 
признаки межпо-

звонкового  
остеохондроза 
поясничного 
отдела позво-

ночника 
 

Диагностика методами кластерного анализа 
(реальный случай): Y4 (Кластер 1, патология) < Y5 
(Кластер 2, отсутствие патологии) < Y6 (Кластер 1, 
пограничное состояние). 

Диагностика врача поликлиники (идеаль-
ный случай): Y4 (Кластер 1, патология) < Y8 (Кла-
стер 1, пограничное состояние) < Y7 (Кластер 3, 
отсутствие патологии). 

Оценка погрешности диагностики пред-
ставлена в таблице 6.5. 

Погрешности (отклонения) между оцен-
кой Эксперта и оценкой комплекса методов кла-
стерного анализа вычислены посредством ис-
пользования Евклидовой метрики – стандартной 
метрики для пространства Rn, применяемой для 
вычисления расстояний между n-ками координат 
соответствующих векторов.  

 
Таблица 6.5 – Погрешности (отклонения) между оценками Эксперта и комплекса методов 

кластерного анализа 
 

Кластер Оценка Элементы выборки Нейрон, Y Евклидова метрика 
Погрешность 

оценки, % 
Эксперт a9 0,757 1,771 2 
Кластерный анализ a6, a9, a10 0,659 1,748 

10 

Эксперт a1–a6, a8, a10 0,690 1,456 
3 

Кластерный анализ a1–a5, a8 0,716 1,363 
10 

Эксперт 
1 

Кластерный анализ 
a7 –0,293 1,479 0 
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Так для кластера 2 и кластера 3 погрешно-
сти составили 10%: 

   

   

2 2

2 2

0,757 0,659 1,771 1,748 0,1;

0,690 0,716 1, 456 1,363 0,1.

   

   
 

Для кластера 1 погрешность между резуль-
татами диагностирования составила 0%. 

Замечание (классификация по сортировке 
значений выходов): можно использовать не-
сколько нейронов возрастания, подобных нейро-
ну (5.1) (например, по 2 нейрона для каждой па-
ры позвонков) для более точного анализа. Сор-
тировка значений выходов этих нейронов может 
более точно определить наличие остеохондроза. 

 
Заключение 
Таким образом, в комплексе с методами 

кластерного анализа модель нейрона «возраста-
ния» позволяет диагностировать остеохондроз с 
погрешностью до 10% по сравнению с оценкой и 
постановкой диагноза Экспертом.  

Нейрон «возрастания» с четырьмя входами 
может быть использован для индикации возрас-
тания значений на входе, что может быть полез-
но для выявления соответствующих тенденций. 
Однако для точного определения остеохондроза 
требуется более сложная модель, учитывающая 
множество факторов и контекст.  

В качестве дополнительного этапа анализа 
исследуемых исходных данных может быть 
предложено применение кластерного и корреля-
ционного анализа данных на основании расстоя-
ний между позвонками и метрик, построенных 
для каждого пациента на основании нейрона 
«возрастания». 
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