УДК 517.538.52+517.538.53

DOI: https://doi.org/10.54341/20778708_2025_2_63_56

EDN: MPCXET

ОБ АСИМПТОТИКЕ СХОДИМОСТИ ТРИГОНОМЕТРИЧЕСКИХ АППРОКСИМАЦИЙ ЭРМИТА – ЯКОБИ И НЕЛИНЕЙНЫХ АППРОКСИМАЦИЙ ЭРМИТА – ЧЕБЫШЁВА

А.П. Старовойтов, М.А. Кухлич, Н.В. Рябченко

Гомельский государственный университет имени Франциска Скорины

ON THE ASYMPTOTICS OF CONVERGENCE OF TRIGONOMETRIC HERMITE – JACOBI APPROXIMATIONS AND NONLINEAR HERMITE – CHEBYSHEV APPROXIMATIONS

A.P. Starovoitov, M.A. Kukhlich, N.V. Ryabchenko

Francisk Skorina Gomel State University

Аннотация. Описана асимптотика поведения тригонометрических аппроксимаций Эрмита – Якоби и нелинейных аппроксимаций Эрмита – Чебышёва для систем специальных функций, ассоциированных с функциями Миттаг – Леффлера. Найдены точные порядковые оценки равномерных уклонений указанных аппроксимаций от соответствующих специальных функций. В некоторых случаях полученные порядковые оценки являются асимптотически точными.

Ключевые слова: функции Миттаг – Леффлера, аппроксимации Эрмита – Паде, аппроксимации Паде – Чебышёва, тригонометрические аппроксимации Эрмита – Якоби, нелинейные аппроксимации Эрмита – Чебышёва.

Для цитирования: Старовойтов, А.П. Об асимптотике сходимости тригонометрических аппроксимаций Эрмита — Якоби и нелинейных аппроксимаций Эрмита — Чебышёва / А.П. Старовойтов, М.А. Кухлич, Н.В. Рябченко // Проблемы физики, математики и техники. — 2025. — № 2 (63). — С. 56—61. — DOI: https://doi.org/10.54341/20778708_2025_2_63_56. — EDN: MPCXET

Abstract. The paper describes the asymptotic behavior of trigonometric Hermite – Jacobi approximations and nonlinear Hermite – Chebyshev approximations for the systems of special functions associated with Mittag – Leffler functions. The exact ordinal estimates of uniform deviations of the indicated approximations from the corresponding special functions are found. In some cases, the obtained ordinal estimates are asymptotically exact.

Keywords: Mittag – Leffler functions, Hermite – Padé approximations, Padé – Chebyshev approximations, trigonometric Hermite – Jacobi approximations, nonlinear Hermite – Chebyshev approximations.

For citation: Starovoitov, A.P. On the asymptotics of convergence of trigonometric Hermite – Jacobi approximations and nonlinear Hermite – Chebyshev approximations / A.P. Starovoitov, M.A. Kukhlich, N.V. Ryabchenko // Problems of Physics, Mathematics and Technics. – 2025. – № 2 (63). – P. 56–61. – DOI: https://doi.org/10.54341/20778708_2025_2_63_56 (in Russian). – EDN: MPCXET

Введение

ем, что $\lambda_1 = 1$).

0.1. *Аппроксимации Эрмита – Паде* Рассмотрим систему

$$\mathbf{F}_{\gamma} = \mathbf{F}_{\gamma}(\vec{\lambda}) = \{F_{\gamma}(z; \lambda_{j})\}_{j=1}^{k},$$

состоящую из вырожденных гипергеометрических функций (функций Миттаг – Леффлера; подробнее см. [1], [2])

$$F_{\gamma}(z;\lambda_{j}) = {}_{1}F_{1}(1,\gamma;\lambda_{j}z) = \sum_{p=0}^{\infty} \frac{\lambda_{j}^{p}}{(\gamma)_{p}} z^{p}, \ j=1,...,k, (0.1)$$
 где параметр $\gamma \in \mathbb{R} \setminus \mathbb{Z}_{-}, \ \mathbb{Z}_{-} = \{0,-1,-2,...\},$ $(\gamma)_{0} = 1, \ (\gamma)_{p} = \gamma(\gamma+1)\cdots(\gamma+p-1)$ — символ Похгаммера, а $\vec{\lambda} = \{\lambda_{j}\}_{j=1}^{k}$ — набор не равных нулю различных комплексных чисел (при $k=1$ счита-

Если $\gamma=1$, то $\mathbf{F}_1(\vec{\lambda})$ является упорядоченным набором экспонент $\{e^{\lambda_j z}\}_{j=1}^k$.

Для системы $\mathbf{F}_{\gamma}(\vec{\lambda})$ при $n \ge m_j - 1$, j = 1, ..., k, существуют (см. [3], [4]) тождественно не равный нулю многочлен

$$Q_m(z; \mathbf{F}_{\gamma}) = Q_{n, \vec{m}}(z; \mathbf{F}_{\gamma}(\vec{\lambda})),$$

 $\deg Q_m \leq m$, и многочлены

$$P_{j}(z; \mathbf{F}_{\gamma}) = P_{n_{j}, n, \vec{m}}(z; \mathbf{F}_{\gamma}(\vec{\lambda})),$$

 $\deg P_j \leq n_j,\;$ для которых в некоторой окрестности нуля

$$F_{\gamma}(z; \lambda_{j}) - \frac{P_{j}(z; \mathbf{F}_{\gamma})}{Q_{m}(z; \mathbf{F}_{\gamma})} = \sum_{l=n+m+1}^{\infty} d_{l}^{j} z_{l}, j = 1, ..., k. \quad (0.2)$$

Здесь и далее $n, m_1, ..., m_k$ – целые неотрицательные числа, $\vec{m} = (m_1, ..., m_k)$,

$$m = \sum_{p=1}^{k} m_p, \quad n_j = n + m - m_j, \quad j = 1, ..., k.$$

В частности, если k=1, то $F_{\gamma}(\vec{\lambda})$ состоит из одной функции $f(z):=F_{\gamma}(z;1)$, соответственно многочлены

$$Q_{n,m}(z;f) := Q_{n,\bar{m}}(z;f),$$

$$P_{n,m}(z;f) := P_{n,n,\bar{m}}(z;f)$$

условиями (0.2) определяются с точностью до мультипликативной константы, а их отношение задает единственную рациональную дробь $\pi_{n,m(z;f)} = P_{n,m}(z;f)/Q_{n,m}(z;f)$, которую будем называть аппроксимацией $\Pi a \partial e - \mathcal{H} ko \delta u$ функции f (аппроксимацией $\Pi a \partial e - \mathcal{H} ko \delta u$ функции терминологии см. [5], [6]).

При $k \ge 2$ и $n \ge m_i - 1$, j = 1, ..., k, дроби

$$\pi_{j}(z; \mathbf{F}_{\gamma}) = \pi_{j}(z; \mathbf{F}_{\gamma}(\vec{\lambda})) = \pi_{n_{j},n,m}(z; \mathbf{F}_{\gamma}(\vec{\lambda})) = \frac{P_{j}(z; \mathbf{F}_{\gamma})}{Q_{m}(z; \mathbf{F}_{\gamma})}$$

существуют и условиями (0.2) определяются однозначно. Тем самым однозначно определен вектор $\vec{\pi}_{n,\vec{m}}(z;\mathbf{F}_{\gamma}) = \{\pi_{j}(z;\mathbf{F}_{\gamma}(\vec{\lambda}))\}_{j=1}^{k}$. Координатные функции вектора $\vec{\pi}_{n,\vec{m}}(z;\mathbf{F}_{\gamma})$ будем называть аппроксимациями Эрмита — Якоби, а многочлены $Q_{m}(z;\mathbf{F}_{\gamma})$, $P_{j}(z;\mathbf{F}_{\gamma})$ — многочленами Эрмита — Якоби для мультииндекса (n,\vec{m}) и системы $\mathbf{F}_{\gamma}(\vec{\lambda})$.

0.2. Тригонометрические аппроксимации Эрмита – Якоби

Рассмотрим теперь набор тригонометрических рядов

$$G_{\gamma}(z;\lambda_{j}) = \sum_{p=0}^{\infty} \frac{\lambda_{j}^{p}}{(\gamma)_{p}} \cos px, \quad j=1,...,k,$$

ассоциированных с рядами (0.1), и соответствующую ассоциированную систему тригонометрических функций $\mathbf{G}_{\gamma}(\vec{\lambda}) = \{G_{\gamma}(z;\lambda_{j})\}_{j=1}^{k}$. В [7] при $k \geq 1$ и $n \geq m_{j} - 1$, $j = 1, \ldots, k$ доказано существование таких тригонометрических рациональных функций

$$\begin{split} & \pi_{j}^{t}(z;\mathbf{G}_{\gamma}) = \pi_{j}^{t}(z;\mathbf{G}_{\gamma}(\vec{\lambda})) = \\ & = \pi_{n_{j},n,m}^{t}(z;\mathbf{G}_{\gamma}(\vec{\lambda})) = \frac{P_{j}^{t}(z;\mathbf{G}_{\gamma})}{Q_{m}^{t}(z;\mathbf{G}_{\gamma})}, \end{split}$$

что

$$G_{\gamma}(x; \lambda_{j}) - \pi_{j}^{t}(x; \mathbf{G}_{\gamma}) =$$

$$= \sum_{l=n+m+1}^{\infty} (a_{k}^{j} \cos lx + b_{k}^{j} \sin lx), \quad j = 1, ..., k,$$
(0.3)

где

$$\begin{split} Q_m^t(x; \mathbf{G}_{\gamma}) &= Q_{n, \vec{m}}^t(x; \mathbf{G}_{\gamma}(\vec{\lambda})), \\ P_j^t(x; \mathbf{G}_{\gamma}) &= P_{n_j, n, \vec{m}}^t(x; \mathbf{G}_{\gamma}(\vec{\lambda})) \end{split}$$

— тригонометрические многочлены, степени которых соответственно не выше m и n_j . Координатные функции вектора

$$\vec{\pi}_{n,\bar{m}}^t(\mathbf{G}_{\gamma}) = \{\pi_j^t(z;\mathbf{G}_{\gamma}(\vec{\lambda}))\}_{j=1}^k$$

будем называть (см. [7], [8]) тригонометрическими аппроксимациями Эрмита – Якоби для мультииндекса (n, \vec{m}) и системы $\mathbf{G}_{\gamma}(\vec{\lambda})$.

При k=1 полагаем

$$\pi_{n,m}^t(x;\mathbf{G}_{\gamma}) := \pi_{n,n,\bar{m}}^t(x;\mathbf{G}_{\gamma}(\vec{\lambda})).$$

Дроби $\pi_{n,m}^{t}(x; \mathbf{G}_{\gamma})$ называют тригонометрическими аппроксимациями Паде для пары индексов (n,m) и функции $G_{\gamma}(x,1)$.

0.3. Нелинейные аппроксимации Эрмита – Чебышёва

Рассмотрим также систему

$$\mathbf{Ch}_{\gamma} = \mathbf{Ch}_{\gamma}(\vec{\lambda}) = \{Ch_{\gamma}(x; \lambda_{j})\}_{j=1}^{k},$$

состоящую из функций, представленных рядами Фурье по многочленам Чебышёва

$$T_n(x) = \cos(n \arccos x)$$

$$Ch_{\gamma}(x;\lambda_j) = \sum_{p=0}^{\infty} \frac{\lambda_j^p}{(\gamma)_p} T_p(x), j = 1,...,k.$$

При $k \ge 1$ и $n \ge m_j - 1$, j = 1,...,k, существуют [7], [8] рациональные дроби

$$\pi_j^{ch}(z; \mathbf{Ch}_{\gamma}) = \pi_j^{ch}(z; \mathbf{Ch}_{\gamma}(\vec{\lambda})) =$$

$$=\pi_{n_{j},n,m}^{ch}(z;\mathbf{Ch}_{\gamma}(\vec{\lambda}))=\frac{P_{j}^{ch}(z;\mathbf{Ch}_{\gamma})}{Q_{m}^{ch}(z;\mathbf{Ch}_{\gamma})},$$

где многочлены

$$Q_m^{ch}(x; \mathbf{Ch}_{\gamma}) = Q_{n, \bar{m}}^{ch}(x; \mathbf{Ch}_{\gamma}(\bar{\lambda})),$$

$$P_j^{ch}(x; \mathbf{Ch}_{\gamma}) = P_{n_j, n, \vec{m}}^{ch}(x; \mathbf{Ch}_{\gamma}(\vec{\lambda})),$$

степени которых не превышают соответственно m и n_i , подобраны так, что

$$Ch_{\gamma}(x; \lambda_j) - \pi_j^{ch}(x; \mathbf{Ch}_{\gamma}) = \sum_{l=n+m+1}^{\infty} c_l^j T_l(x), j = 1, \dots, k.$$

Как и в [7], [8] координатные функции вектора $\vec{\pi}_{n,\vec{m}}^{ch}(\mathbf{Ch}_{\gamma}) = \{\pi_{j}^{ch}(z; \mathbf{Ch}_{\gamma}(\vec{\lambda}))\}_{j=1}^{k}$ будем называть нелинейными аппроксимациями Эрмита — Чебышёва для мультииндекса (n,\vec{m}) и системы

$$\mathbf{Ch}_{\mathbf{x}}(\vec{\lambda})$$
. При $k=1$ дроби

$$\pi_{n,m}^{ch}(x; \mathbf{Ch}_{\gamma}) := \pi_{n,n,\bar{m}}^{ch}(x; \mathbf{Ch}_{\gamma}(\vec{\lambda}))$$

называют нелинейными аппроксимациями Паде – Чебышёва (см. [9]).

0.4. Постановка задачи

Пусть $\{\lambda_i\}_{i=1}^k$ — корни уравнения $\lambda^k = 1$, т. е.

$$\lambda_j = e^{i\frac{2\pi(j-1)}{k}}, j = 1, \dots, k,$$

где i – мнимая единица. Полагаем

$$\varphi(x) := x(1-x^k).$$

Через x_i обозначим нули $\varphi'(x)$:

$$x_j = \sqrt[k]{\frac{1}{k+1}} e^{i\frac{2\pi(j-1)}{k}}, j = 1, ..., k.$$

Рассмотрим функцию $S(x) := \ln \varphi(x), x \in (0,1)$. По определению полагаем, что $S(0) = S(1) = -\infty$. Справедливы равенства [4]

$$S(x_1) = \ln \frac{k}{\sqrt[k]{(k+1)^{k+1}}}, \quad S'(x) = \frac{\varphi'(x)}{\varphi(x)},$$
$$S''(x) = \frac{\varphi''(x)\varphi(x) - [\varphi'(x)]^2}{\varphi^2(x)},$$

из которых следует, что

$$S'(x_1) = 0$$
, $S''(x_1) = \frac{\varphi''(x_1)}{\varphi(x_1)} = -\sqrt[k]{(k+1)^{k+2}}$,

И

$$\begin{split} B_k(n) &:= \sqrt{-\frac{2\pi}{nS''(x_1)}} e^{nS(x_1)} = \\ &= \sqrt{\frac{2\pi}{n\sqrt[k]{(k+1)^{k+2}}}} \left(\frac{k}{\sqrt[k]{(k+1)^{k+1}}}\right)^n. \end{split}$$

Для произвольного вектора $\vec{\lambda} = \{\lambda_j\}_{j=1}^k$ равномерная сходимость $\pi_j(z; \mathbf{F}_{\gamma}(\vec{\lambda}))$ к $F_{\gamma}(z; \lambda_j)$ на компактах в $\mathbb C$ при k=1 доказана де Брюеном [10], а при $k \geq 2-A$.И. Аптекаревым [3]. В работе [4] найдена асимптотика разностей $F_{\gamma}(z; \lambda_j) - \pi_j(z; \mathbf{F}_{\gamma}(\vec{\lambda}))$ при некоторых дополнительных ограничениях на вектор $\vec{\lambda}$ и мультииндекс (n, \vec{m}) . В частности, если $\{\lambda_j\}_{j=1}^k$ являются корнями уравнения $\lambda^k = 1$ (везде в дальнейшем будем рассматривать только такие значения λ_j), то справедлива следующая

Теорема 0.1. Если $k \ge 1$, то при любом фиксированном z, $n = m_1 = ... = m_k$ и $n \to +\infty$

$$F_{\gamma}(z;\lambda_{j}) - \pi_{j}(z;F_{\gamma}(\vec{\lambda})) = (-1)^{n} x_{1}^{\gamma-1} \lambda_{j}^{n+1} B_{k}(n) \times \frac{z^{kn+n+1}}{(\gamma)_{kn+n}} e^{\lambda_{j}(1-x_{1})z} e^{\frac{\sum_{p=1}^{k} \lambda_{p}}{k+1}z} (1 + O(1/n)),$$

$$(0.4)$$

Так как при $k \ge 2$ сумма $\sum_{p=1}^k \lambda_p$ равна нулю, то в этом случае множитель в (0.4) $\exp\left\{\left(\sum_{i=1}^k \lambda_i\right) z / (k+1)\right\}$ равен единице. Величина

O(1/n) при $n \to +\infty$ является бесконечно малой, модуль которой на компактах в $\mathbb C$ не превышает L/n, где L – положительная постоянная.

Следующие утверждения непосредственно вытекают из теоремы 0.1.

Следствие 0.1. Если k = 1, то при любом фиксированном z, n = m и $n \to +\infty$

$$F_{y}(z;1) - \pi_{n,n}(z;F_{y}) =$$

$$= (-1)^n \sqrt{\frac{\pi}{n}} \frac{1}{2^{2n+\gamma}} \frac{z^{2n+1}}{(\gamma)_{2n}} e^z (1 + O(1/n)).$$

Спедствие 0.2. Пусть k=2, $n=m_1=m_2$. Тогда $\lambda_1=1$, $\lambda_2=-1$ и при $n\to +\infty$

$$F_{\gamma}(z;1) - \pi_1(z;F_{\gamma}) =$$

$$= (-1)^n \left(\frac{1}{\sqrt{3}}\right)^{\gamma - 1} \sqrt{\frac{2\pi}{9n}} \left(\frac{2}{3\sqrt{3}}\right)^n \frac{z^{3n+1}}{(\gamma)_{3n}} e^{(1 - \frac{1}{\sqrt{3}})z} (1 + o(1)),$$

$$F_n(z; -1) - \pi_2(z; F_n) =$$

$$=-\left(\frac{1}{\sqrt{3}}\right)^{\gamma-1}\sqrt{\frac{2\pi}{9n}}\left(\frac{2}{3\sqrt{3}}\right)^{n}\frac{z^{3n+1}}{\gamma)_{3n}}e^{-(1-\frac{1}{\sqrt{3}})z}(1+o(1)),$$

где o(1) – бесконечно малая при $n \to +\infty$

Основной целью данной работы является нахождение асимптотик соответствующих разностей для тригонометрических аппроксимаций Эрмита – Якоби и нелинейных аппроксимаций Эрмита – Чебышёва. В случае k=1 аналогичная задача подробно исследовалась в работах [11]—[18].

1 Асимптотика тригонометрических аппроксимаций Эрмита – Якоби

В этом разделе будем исследовать асимптотику разностей $G_{\gamma}(x;\lambda_{j})-\pi_{j}'(x;G_{\gamma}(\vec{\lambda}))$ в диагональном случае, когда $n=m_{1}=\ldots=m_{k}$, и $n\to +\infty$. Справедлива следующая

Теорема 1.1. Если k = 1, то при любом фиксированном x, n = m, $u \ n \to +\infty$

$$G_{\gamma}(x;1) - \pi_{n,n}^{t}(x;G_{\gamma}) = (-1)^{n} \sqrt{\frac{\pi}{n}} \frac{1}{2^{2n+\gamma}} \frac{z^{2n+1}}{(\gamma)_{2n}} \times \operatorname{Re}\left\{e^{i(2n+1)x} e^{\cos x + i \sin x} (1 + O(1/n))\right\}.$$
(1.1)

Теорема 1.2. Пусть $k \ge 2$. Тогда при любом фиксированном x, $n=m_1=\ldots=m_k$, $n \to +\infty$, u $j=1,\ldots,k$

$$G_{\gamma}(x; \lambda_{j}) - \pi_{j}^{t}(x; G_{\gamma}) = (-1)^{n} x_{1}^{\gamma - 1} \frac{B_{k}(n)}{(\gamma)_{kn+n}} \times \operatorname{Re} \left\{ e^{i(kn+n+1)x} \lambda_{j}^{n+1} e^{\lambda_{j}(1-x_{1})e^{ix}} (1 + O(1/n)) \right\}.$$
(1.2)

Доказательство теоремы 1.2. Очевидно, что $G_{\gamma}(x;\lambda_{j})=\operatorname{Re}\left\{F_{\gamma}(e^{ix};\lambda_{j})\right\}$. Полагая в (0.3) и (0.4) $z=e^{ix}$, а затем приравнивая действительные части от выражений, стоящих слева и справа от знака нового равенства, получим

$$G_{\gamma}(x;\lambda_{j}) - \operatorname{Re}\{\pi_{j}(e^{ix};F_{\gamma})\} = (-1)^{n} x_{1}^{\gamma-1} \frac{B_{k}(n)}{(\gamma)_{kn+n}} \times \operatorname{Re}\left\{e^{i(kn+n+1)x} \lambda_{j}^{n+1} e^{\lambda_{j}(1-x_{1})e^{ix}} (1 + O(1/n))\right\} =$$

$$= \sum_{l=n+m+1}^{\infty} a_{k}^{j} \cos lx.$$
(1.3)

Из (1.3) следует, что для доказательства теоремы 1.2 достаточно обосновать справедливость равенств

$$\pi_{i}^{t}(x; G_{y}) = \text{Re}\{\pi_{i}(e^{ix}; F_{y})\}, j = 1, ..., k.$$
 (1.4)

Так как коэффициенты Тейлора рядов (0.1) — действительные числа, то многочлены стоящие в числителе и знаменателе дроби $\pi_j(z;F_\gamma)$ имеют действительные коэффициенты (см. [19]). Предположим, что они представляются в виде

$$Q_m(z; F_{\gamma}) = \sum_{l=0}^{m} q_l z^l, \ P_j(z; F_{\gamma}) = \sum_{l=0}^{n_j} p_l^j z^l.$$

Тогда при $z = e^{x}$

$$\operatorname{Re}\left\{\pi_{j}\left(e^{ix};F_{\gamma}\right)\right\} = \frac{1}{2}\left(\frac{P_{j}\left(e^{ix};F_{\gamma}\right)}{Q_{m}\left(e^{ix};F_{\gamma}\right)} + \frac{\overline{P_{j}\left(e^{ix};F_{\gamma}\right)}}{\overline{Q_{m}\left(e^{ix};F_{\gamma}\right)}}\right) =$$

$$= \frac{1}{2} \cdot \frac{\sum_{l=0}^{n_{j}} p_{l}^{j} e^{ilx} \sum_{s=0}^{m} q_{s} e^{-isx} + \sum_{l=0}^{n_{j}} p_{l}^{j} e^{-ilx} \sum_{s=0}^{m} q_{s} e^{isx}}{\sum_{s=0}^{m} \sum_{l=0}^{m} q_{s} q_{l} \cos((s-l)x)} = \frac{\sum_{s=0}^{n_{j}} \sum_{s=0}^{m} p_{l}^{j} q_{s} \cos((s-l)x)}{\sum_{s=0}^{m} \sum_{l=0}^{m} q_{s} q_{l} \cos((s-l)x)}.$$

$$(1.5)$$

Поскольку $n=m_1=\ldots=m_k$, то $n_j=m$. Значит числитель и знаменатель в (1.5) являются тригонометрическими многочленами степени не выше m. Отсюда и (1.3) делаем вывод о том, что справедливы равенства (1.4). Тогда из (1.3) следует справедливость равенств (1.2).

Равенство (1.1) и теорема 1.1 доказываются аналогично.

Следствие 1.1. Если k=1, то при n=m и $n\to\infty$

$$\|G_{\gamma}(x;1) - \pi_{n,n}^{t}(x;G_{\gamma})\| \sim \sqrt{\frac{\pi}{n}} \frac{1}{2^{2n+\gamma}} \frac{1}{|(\gamma)_{2n}|}.$$
 (1.6)

Здесь и далее $\|f(x)\|=\max\{|f(x)|\, x\in\mathbb{R}\};$ обозначение $\alpha_n\sim\beta_n$ означает, что бесконечно малые $\alpha_n,\ \beta_n$ при $n\to\infty$ эквивалентны, т. е. $\lim \alpha_n/\beta_n=1.$

Следствие 1.2. Если $k \ge 2$, то при $n = m_1 = \ldots = m_k$ и $n \to \infty$

$$||G_{\gamma}(x;\lambda_{j}) - \pi'_{j}(x;G_{\gamma})|| \sim x_{1}^{\gamma-1} \frac{B_{k}(n)}{|(\gamma)_{kn+n}|} e^{1-x_{1}},$$

$$j = 1, \dots, k.$$

В частности, если k=2, то $\lambda_1=1$, $\lambda_2=-1$ и при $n\to\infty$, j=1,2

$$\|G_{\gamma}(x;\pm 1) - \pi_{j}(x,G_{\gamma})\| \sim$$

$$\sim \left(\frac{1}{\sqrt{3}}\right)^{\gamma-1} \sqrt{\frac{2\pi}{9n}} \left(\frac{2}{3\sqrt{3}}\right)^{n} \frac{e^{1-1/\sqrt{3}}}{|(\gamma)_{\gamma}|}.$$

Доказательство следствия 1.2. Из теоремы 1.2 следует, что

$$G_{\gamma}(x;\lambda_{j}) - \pi_{j}^{i}(x;G_{\gamma}) = (-1)^{n} x_{1}^{\gamma-1} \frac{B_{k}(n)}{(\gamma)_{kn+n}} \times \operatorname{Re} \left\{ e^{(1-x_{1})\cos(x+\lambda_{j})} \times e^{i\left[(kn+n+1)x+(1-x_{1})\sin(x+\alpha_{j})+(n+1)\alpha_{j}\right]} (1+O(1/n)) \right\},$$
(1.7)

где $\alpha_j = 2\pi(j-1)/k$. Учитывая, что $|\operatorname{Re} z| \leq |z|$, отсюда получим

$$\|G_{\gamma}(x,\lambda_{j}) - \pi_{j}^{t}(x;G_{\gamma})\| \leq$$

$$\leq x_{1}^{\gamma-1} \frac{B_{k}(n)}{|(\gamma)_{kn+n}|} e^{1-x_{1}} \left| 1 + O\left(\frac{1}{n}\right) \right|.$$
(1.8)

Неравенство (1.8) является точным. Чтобы убедиться в этом достаточно в (1.7) положить $x = -\alpha_i$.

Замечание 1.1. При k=1 и при выполнении условий следствия 1.1 в работах [17], [18] установлено, что

$$\|G_{\gamma}(x;1) - \pi_{nm}^{t}(x;G_{\gamma})\| \approx \frac{n! \cdot |(\gamma)_{n}|}{|(\gamma)_{2n} \cdot (\gamma)_{2n+1}|}.$$
 (1.9)

Здесь $\alpha_n \asymp \beta_n$ означает, что бесконечно малые α_n и β_n имеют одинаковый порядок при $n \to \infty$. Так как $\gamma \in \mathbb{R} \setminus \mathbb{Z}_-$, то, принимая во внимание равенство $(\gamma)_p = \Gamma(p+\gamma)/\Gamma(\gamma)$, где $\Gamma(x)$ – гамма-функция Эйлера, с помощью Стирлинга нетрудно показать, что при $n \to +\infty$

$$\frac{n! \cdot \gamma_n}{(\gamma)_{2n+1}} \sim \sqrt{\frac{\pi}{n}} \frac{1}{2^{2n+\gamma}}.$$

Это означает, что равенства (1.6) и (1.9) полностью согласуются и, более того, следствие 1.1 уточняет соответствующий результат из [17], [18].

2 Асимптотика нелинейных аппроксимаций Эрмита – Чебышёва

В этом разделе докажем ряд утверждающий о скорости сходимости нелинейных аппроксимаций Эрмита – Чебышёва.

Теорема 2.1. Если k = 1, то для любого x, n = m при $n \to \infty$

$$Ch_{\gamma}(x;1) - \pi_{n,n}^{\text{ch}}(x;Ch_{\gamma}) = (-1)^{n} \sqrt{\frac{\pi}{n}} \frac{1}{2^{2n+\gamma}} \frac{1}{(\gamma)_{2n}} \times \text{Re} \left\{ e^{i(2n+1)\arccos x} e^{x+i\sqrt{1-x^{2}}} \left(1 + O(1/n)\right) \right\}. \quad (2.1)$$

Теорема 2.2. Если $k \ge 2$, то для любого x, $n = m_1 = \ldots = m_n$ при $n \to \infty$

$$Ch_{\gamma}(x;\lambda_{j}) - \pi_{j}^{\text{ch}}(x;Ch_{\gamma}) = (-1)^{n} x_{1}^{\gamma-1} \frac{B_{k}(n)}{\gamma_{kn+n}} \times (2.2)$$

$$\times \text{Re} \left\{ e^{i(kn+n+1)\arccos x} \lambda_{j}^{n+1} e^{\lambda_{j}(1-x_{1})\left(x+i\sqrt{1-x^{2}}\right)} \left(1+O(1/n)\right) \right\},$$

$$j = 1, \dots, k.$$

Доказательство теоремы 2.2. В условиях теоремы 2.2 существуют тригонометрические аппроксимации Эрмита – Якоби $\{\pi_j^t(x; G_\gamma(\vec{\lambda}))\}_{j=1}^k$. Из теоремы 1.2 следует справедливость равенств (1.2), а из (1.3) следует, что при j=1,...,k

$$G_{\gamma}(x;\lambda_{j}) - \pi_{j}^{t}(x;G_{\gamma}) = \sum_{l=n+m+1}^{\infty} a_{l}^{j} \cos lx.$$
 (2.3)

Представляя в (2.3) агссов x вместо x, получим

$$Ch_{\gamma}(x;\lambda_j) - \pi_j^t(\arccos x; G_{\gamma}) = \sum_{l=n+m+1}^{\infty} a_l^j T_l(x) \quad (2.4)$$

Из равенств (2.4) и (1.5) следует, что

$$\pi_i^{ch}(x; Ch_{\gamma}) = \pi_i^t(\arccos x; G_{\gamma}), \quad j = 1, \dots, k.$$

Отсюда и с учётом равенств (1.2) вытекает справедливость равенств (2.2). $\hfill\Box$

Равенство (2.1) и теорема 2.1 доказываются аналогично.

Следствие 2.1. Пусть k=1. Тогда при n=m и $n\to\infty$

$$\|Ch_{\gamma}(x;1) - \pi_{n,n}^{ch}(x;Ch_{\gamma})\|_{1} \simeq \sqrt{\frac{\pi}{n}} \frac{1}{2^{2n+\gamma}} \frac{1}{|(\gamma)_{\gamma_{n-1}}|}.$$

Здесь и далее $||f(x)||_1 = \max\{|f(x)|: x \in [-1,1]\}.$

Следствие 2.2. Пусть $k \ge 2$. Тогда при $n = m_1 = ... = m_k$ и $n \to \infty$

$$\begin{aligned} \left\| Ch_{\gamma}(x;\lambda_{j}) - \pi_{n,m}^{ch}(x;Ch_{\gamma}) \right\|_{1} & \approx x_{1}^{\gamma-1} \frac{B_{k}(n)}{|(\gamma)_{kn+n}|} e^{1-x_{1}}, \\ j &= 1, \dots, k. \end{aligned}$$

Доказательства следствий 2.1 и 2.2 аналогично доказательствам следствий 1.1 и 1.2.

Заметим также, что следствие 2.1 с помощью другого метода доказано ранее в работе [18].

ЛИТЕРАТУРА

- 1. *Mittag-Leffler*, *M.G.* Sur la nouvelle fonction E(x) / M.G. Mittag-Leffler // C.R. Akad. Sci. Paris. 1903. Vol. 7137. P. 554–558.
- 2. Джрбашян, М.М. Интегральные преобразования и представления функций в комплексной области / М.М. Джрбашян. Москва: Наука, 1966.
- 3. Аптекарев, А.И. Об аппроксимациях Паде к набору $\{_1F_1(1,c;\lambda_iz)\}_{i=1}^k$ / А.И. Аптекарев // Вестник МГУ. Серия 1. Математика. Механика. $1981.- \mathbb{N} 2.- \mathbb{C}. 58-62.$
- 4. Старовойтов, А.П. Аппроксимации Эрмита Паде функций Миттаг Леффлера / А.П. Старовойтов // Труды Математического института имени В.А. Стеклова РАН. 2018. Т. 301. С. 241—258.
- 5. Бейкер мл. Дж. Аппроксимации Паде. 1. Основы теории. 2. Обобщения и приложения / Дж. Бейкер мл., П. Грейвс-Моррис. Москва: Мир, 1986.
- 6. Аппроксимации Паде, непрерывные дроби и ортогональные многочлены / А.И. Аптекарев,

- В.И. Буслаев, А. Мартинес-Финкельштейн, С.П. Суетин // Успехи математических наук. 2011. Т. 66, № 6 (402). С. 37–122.
- 7. Старовойтов, А.П. О существовании тригонометрических аппроксимаций Эрмита Якоби и нелинейных аппроксимаций Эрмита Чебышёва / А.П. Старовойтов, Е.П. Кечко, Т.М. Оснач // Журнал Белорусского государственного университета. Математика. Информатика. 2023. № 2. С. 6–17.
- 8. Старовойтов, А.П. О существовании тригонометрических аппроксимаций Эрмита Якоби и нелинейных аппроксимаций Эрмита Чебышёва / А.П. Старовойтов, И.В. Кругликов, Т.М. Оснач // Журнал Белорусского государственного университета. Математика. Информатика. 2024. № 3. С. 6–21.
- 9. *Суетин*, *С.П.* О существовании нелинейных аппроксимаций Паде Чебышёва для аналитических функций / С.П. Суетин // Математические заметки. 2009. Т. 86, № 2. С. 290–303.
- 10. De Bruin, M.G. Convergence of the Padé table for $_1F_1(1;c;x)$ / M.G. De Bruin J. // K. Nederl. Akad. Wetensch., Ser. A. 1976. Vol. 79. P. 408–418.
- 11. Гончар, А.А. Аппроксимации Паде Чебышёва для многозначных аналитических функций, вариация равновесной энергии и S-свойство стационарных компактов / А.А. Гончар, Е.А. Рахманов, С.П. Суетин // Успехи математических наук. 2011. T. 66, No. 6. C. 3-36.
- 12. Лабыч, Ю.А. Тригонометрические аппроксимации Паде функций с регулярно убывающими коэффициентами Фурье / Ю.А. Лабыч, А.П. Старовойтов // Математический сборник. 2009. T. 200, № 7. C. 107–130.
- 13. Адуков, В.М. Асимптотическое поведение знаменателей аппроксимаций Паде –Чебышёва для последней промежуточной строки. Рациональный случай / В.М. Адуков, О.Л. Ибряева // Вестник ЮУрГУ. Серия математика, физика, химия. 2005. Т. 6, № 6. С. 11–18.
- 14. *Ибраева*, *О.Л.* Асимптотическое поведение знаменателей аппроксимаций Паде Чебышёва для последней промежуточной строки. Рациональный случай / О.Л. Ибряева // Известия Челябинского научного центра 2002. № 4. С. 1–5.
- 15. *Березкина*, *Л.Л*. Тригонометрические аппроксимации Паде и наилучшие рациональные приближения. Дисс. ... канд. физ.-мат. наук / Л.Л. Березкина. Минск: БГУ, 1988. 112 с.
- 16. Лабыч, Ю.А. Асимптотическое поведение знаменателей аппроксимаций Паде Чебышёва для последней промежуточной строки. Рациональный случай / Ю.А. Лабыч // Вестник Полоцкого государственного университета. Серия. С. Фундаментальные науки. 2009. № 3. С. 77—86.

- 17. Старовойтов, А.П. Аппроксимации Паде специальных функций / А.П. Старовойтов, Н.А. Старовойтова, Н.В. Рябченко // Український математичний вісник. 2012. Т. 9, № 2. С. 246—258.
- 18. Рябченко, Н.В. Тригонометрические аппроксимации Паде специальных функций / Н.В. Рябченко // Проблемы физики, математики и техники. 2021. № 2(47). С. 81–83.
- 19. *Старовойтов*, $A.\Pi$. О детерминантных представлениях многочленов Эрмита Паде /

А.П. Старовойтов, Н.В. Рябченко // Труды Московского математического общества. -2022. - Т. 83, № 1. - С. 17–35.

Поступила в редакцию 05.03.2025.

Информация об авторах

Старовойтов Александр Павлович – д.ф.-м.н., профессор Кухлич Мария Андреевна – студентка Рябченко Наталия Валерьевна – к.ф.-м.н., доцент