МАТЕМАТИКА =

УДК 512.542

DOI: https://doi.org/10.54341/20778708 2024 4 61 48

EDN: DBDFPO

О р-ДЛИНЕ ПРОИЗВЕДЕНИЯ ДВУХ В-ГРУПП В.Н. Княгина

Гомельский государственный университет имени Франциска Скорины

ON THE *p*-LENGTH OF A PRODUCT OF TWO *B*-GROUPS

V.N. Kniahina

Francisk Skorina Gomel State University

Аннотация. Конечная ненильпотентная группа называется В-группой, если в ее фактор-группе по подгруппе Фраттини все собственные подгруппы примарны. Исследуется p-длина $l_n(G)$ конечной p-разрешимой группы, являющейся произведением двух B-подгрупп. В частности, доказывается, что $l_n(G) \le 1$, если p не делит индекс одной из B-подгрупп.

Ключевые слова: конечная группа, В-группа, р-разрешимая группа, р-длина, произведение подгрупп.

Для цитирования: Княгина, В.Н. О р-длине произведения двух В-групп / В.Н. Княгина // Проблемы физики, математики и техники. – 2024. – № 4 (61). – С. 48–52. – DOI: https://doi.org/10.54341/20778708 2024 4 61 48. – EDN: DBDFPO

Abstract. A finite non-nilpotent group is called a B-group if every proper subgroup of its quotient group by Frattini subgroup is primary. The p-length $l_p(G)$ of a finite p-soluble group, which is the product of two B-subgroups, is studied. It has been proved that $l_n(G) \le 1$ if p does not divide the index of one of the B-subgroups.

Keywords: finite group, B-group, p-soluble group, p-length, product of subgroups.

For citation: Kniahina, V.N. On the p-length of a product of two B-groups / V.N. Kniahina // Problems of Physics, Mathematics and Technics. - 2024. - № 4 (61). - P. 48-52. - DOI: https://doi.org/10.54341/20778708_2024_4_61_48 (in Russian). -EDN: DBDFPO

Введение

В-группой называют конечную ненильпотентную группу, у которой в фактор-группе по подгруппе Фраттини все собственные подгруппы примарны. Группа Шмидта (конечная ненильпотентная группа с нильпотентными собственными подгруппами) является В-группой. В строении В-групп и групп Шмидта есть сходства и есть различия. Так, обе они бипримарны, одна из силовских подгрупп в этих группах нормальна, а другая силовская подгруппа – циклическая, см. лемму 2.2 [1]. Одно из различий между В-группами и группами Шмидта заключается в том, что если в группе Шмидта подгруппа Фраттини нормальной силовской подгруппы содержится в центре группы, то в В-группе это свойство нарушается. Например, диэдральная группа порядка 18 является В-группой и не является группой Шмидта.

В работе [1] были описаны начальные свойства В-групп и изучена группа, факторизуемая примарной группой и В-группой. В частности, было доказано, что если конечная группа G = HKпредставима в виде произведения B-подгруппы H и примарной подгруппы K, и если порядок ненормальной силовской подгруппы в H не равен 3 и 7, то группа G разрешима.

В работе [2] было установлено, что конечная р-разрешимая группа, представимая в виде произведения двух своих подгрупп Шмидта, имеет р-длину не более 2. Эта оценка точная, симметрическая группа S_4 имеет 2-длину, равную 2, и является произведением двух групп Шмидта A_4 и S_2 .

В настоящей работе исследуется конечная группа G = HK, представимая в виде произведения двух B-подгрупп H и K. Такая группа может быть простой, например, знакопеременная группа A_5 степени 5 является произведением двух *В*-подгрупп $H \cong A_4$ и $K \cong [C_5]C_2$. В случае, когда конечная группа G = HK p-разрешима устанавливаются достаточные условия, при которых она имеет единичную р-длину. Если В-подгруппы H и K сверхразрешимы, то конечная группа G = HK будет разрешимой, а если порядок G нечетен, то G сверхразрешима.

1 Вспомогательные результаты

Порядки всех рассматриваемых в работе групп конечны. Мы используем стандартные обозначения, а также терминологию из [3], [4].

Напомним некоторые обозначения. Полупрямое произведение двух подгрупп A и B с нормальной подгруппой A записывается [A] B. Центр, коммутант, подгруппы Фраттини и Фиттинга группы G обозначаются соответственно через Z(G), G', $\Phi(G)$ и F(G). Запись $Y \leq X$ (Y < X) означает, что Y — подгруппа (собственная подгруппа) группы X.

Для фиксированных групп будем использовать следующие обозначения:

 Z_{m} — циклическая группа порядка m,

 $E_{n^{m}}$ — элементарная абелева группа порядка p^{m} ,

 D_{2n} — диэдральная группа порядка 2n,

 S_n и A_n — симметрическая и знакопеременная группы степени n.

Группа G с нормальной силовской p-подгруппой G_p называется p-замкнутой. Если в группе G имеется нормальная подгруппа $G_{p'}$ такая, что $G = [G_{p'}]G_p$, то группа G называется p-нильпотентной.

Будем использовать обозначения $B_{\langle p,q\rangle}$ для B-группы с нормальной силовской p-подгруппой и ненормальной силовской Q-подгруппой.

Приведем используемые при доказательстве теорем свойства B-групп.

Лемма 1.1 [1, лемма 2.2]. Пусть $B - B_{\langle p,q \rangle}$ -группа, p и Q — ее силовские p- и Q-подгруппы. Тогда справедливы следующие утверждения:

- (1) B = [P]Q;
- (2) $P \cap \Phi(B) = \Phi(P)$, P = B' и $P / \Phi(P)$ главный фактор группы В порядка p^m , где m показатель числа p по модулю Q;
- (3) $Q = \langle y \rangle$ циклическая подгруппа и $y^q \in Z(B)$. Кроме того, $\Phi(B) = \Phi(P) \times \langle y^q \rangle$ и $Z(B) \leq \Phi(B)$;
- (4) Если H нормальная в B подгруппа u $H \neq B$, то H нильпотентна;
- (5) Если m максимальная в B подгруппа, то либо m нормальна в B и $M = P \times \langle y^q \rangle$, либо $M = [\Phi(P)]Q^x$ для некоторого $x \in B$.

Лемма 1.2 [1, лемма 2.4]. Пусть N — нормальная подгруппа $B_{\langle p,q\rangle}$ -группы $B,\ N\neq B$. Тогда справедливы следующие утверждения:

- (1) силовская p-подгруппа P_1 из N либо совпадает с силовской p-подгруппой группы B, либо $P_1 \leq \Phi(B) \cap P = \Phi(P)$;
- (2) силовская Q-подгруппа Q_1 из N содержится в $\langle y^q \rangle \leq Z(B)$, где $\langle y \rangle$ силовская Q-подгруппа группы B;
 - (3) либо $P \le N$, либо $N \le \Phi(B)$;

(4) фактор-группа B/N либо является $B_{(p,q)}$ -группой, либо циклической Q-группой.

Ненильпотентная группа, у которой все собственные подгруппы примарны, называется группой типа A. Таким образом, B-группу можно определить как группу, у которой фактор-группа по подгруппе Фраттини является группой типа A.

Приведем свойства групп типа A, используемые в дальнейшем.

Лемма 1.3 [5, с. 83]. Если S – группа типа A, то справедливы следующие утверждения:

- (1) S = [P]Q, где p нормальная силовская p-подгруппа, Q ненормальная силовская Q-подгруппа, p и Q различные простые числа;
- (2) Q циклическая подгруппа простого порядка Q и Q действует неприводимо на p;
- (3) p элементарная абелева подгруппа порядка p^m , где m показатель числа p по модуля Q, подгруппа p является минимальной нормальной подгруппой группы S;
 - (4) $Z(S) = \Phi(S) = 1$;
 - (5) 1 < P < S главный ряд группы S.

В следующих двух примерах показано, что при определенных условиях B-группа не является группой Шмидта.

Пример 1.1. Диэдральная группа порядка $2p^n$, p>2, $n\in\mathbb{N}$, является $B_{\langle p,2\rangle}$ -группой. При n>1 она не будет группой Шмидта.

Пример 1.2. Пусть p и Q — простые числа, p делит q — 1, $n \in \mathbb{N}$. Тогда ненильпотентная группа $[Z_{q^n}]Z_p$ является $B_{\langle q,p\rangle}$ -группой. При n>1 она не будет группой Шмидта.

Лемма 1.4. Если $H - B_{\langle p,q \rangle}$ -группа и Q делит p-1, то силовская p-подгруппа в H циклическая.

Доказательство. Пусть H = [P]Q — $B_{\langle p,q \rangle}$ -группа. Тогда $H / \Phi(H)$ — группа типа А порядка $p^m q$, где m — показатель p по модулю Q. По условию Q делит p-1, поэтому m=1. По лемме 1.1 (2) $P \cap \Phi(H) = \Phi(P)$, поэтому $|P/\Phi(P)| = p$ и p — циклическая группа.

Пусть π — множество простых чисел. У каждой π -разрешимой группы существует нормальный ряд, факторы которого являются π -группами или π' -группами. Такой ряд называют (π,π') -рядом. π -длиной π -разрешимой группы G называют наименьшее число π -факторов среди всех (π,π') -рядов группы G. π -длина π -разрешимой группы G обозначается через $l_{\pi}(G)$. Как обычно, $O_{\pi'}(G)$ и $O_{\pi}(G)$ — наибольшие нормальные π' - и π -подгруппы группы G соответственно.

Лемма 1.5 [6, лемма 4]. Пусть в р-разрешимой группе G силовская р-подгруппа является произведением двух циклических подгрупп. Тогда:

- (1) если p > 2, то $l_p(G) \le 1$;
- (2) если p=2, то $G/O_{2',2}(G)$ либо имеет нечетный порядок, либо изоморфна S_3 . В частности, $l_2(G) \le 2$.

Лемма 1.6 [2, лемма 5]. Пусть $G - \pi$ -разрешимая группа. Если силовские р-подгруппы группы G циклические для всех $p \in \pi(G)$, то $l_{\pi}(G) \leq 1$.

2 Достаточные условия, при которых произведение двух B-групп имеет единичную p-длину

Теорема 2.1. Пусть G-p-разрешимая конечная группа и B-ee $B_{\langle p,q\rangle}$ -подгруппа для некоторого $q\in\pi(G)$. Если p не делит индекс подгруппы B в группе G, то $l_p(G)\leq 1$.

Доказательство. Воспользуемся индукцией по порядку группы G. Пусть N — неединичная нормальная подгруппа группы G, а B — ее $B_{\langle p,q\rangle}$ - подгруппа, B=[P]Q. По условию, p не делит $\mid G:B\mid$,\$ поэтому p — силовская p-подгруппа группы G. По свойствам G-групп (лемма 1.2 (4)) фактор-группа G иклическая G-группа, либо G — группа. Если G — G — группа и G — G — G — G — G — группа и G — G — G — G — G — группа и G — G — G — G — группа и G — G — G — G — группа и G — гр

$$|G/N:BN/N|=|G:BN|,$$

 $|G:B|=|G:BN||BN:B|,$

то p не делит |G:BN|=|G/N:BN/N|. По индукции $l_p(G/N)\leq 1$. Значит, в любом случае $l_p(G/N)\leq 1$ для каждой неединичной нормальной в G подгруппы N. Предположим, что $l_p(G)>1$. По лемме VI.6.9 [3] следует считать, что

$$\Phi(G) = O_{p'}(G) = 1, \ O_p(G) = C_G(O_p(G))$$

и $N=O_p(G)$ является единственной минимальной нормальной в G подгруппой. Пусть m — максимальная в G подгруппа, не содержащая N. Тогда $N\cap M=1$ и G=[N]M. Так как $N\leq P\leq B$, то согласно лемме 1.2 (3) либо N=P, либо $N\leq \Phi(B)$. Если N=P, то $l_p(G)\leq 1$. Если $N\leq \Phi(B)$, то по тождеству Дедекинда

$$B = [N](B \cap M) = \Phi(B)(B \cap M) = B \cap M,$$
что невозможно.

Теорема 2.2. Пусть A и B — B-подгруппы p-разрешимой конечной группы G и пусть G = AB. Тогда справедливы следующие утверждения:

(1) если A и B - p-замкнутые pd-подгруппы $u p \neq 3$ или $\pi(G) \neq \{2,3\}$, то G p-замкнута;

- (2) если A и B p-нильпотентные pd-подгруппы и $p \neq 2$ или $3 \notin \pi(G)$, то группа G p-нильпотентна:
- (3) если p не делит НОД (|G:A|, |G:B|), то $l_{p}(G) \le 1$.

Доказательство. (1) Введем следующие обозначения: $A = [P_1]Q$, $B = [P_2]R$, где P_1 и P_2 — силовские p-подгруппы из A и B такие, что P_1P_2 — силовская p-подгруппа из G (см. лемму VI.4.7 [3]), Q — силовская Q-подгруппа из A, R — силовская r-подгруппа из B. Поскольку $\pi(G) = \{p,q,r\}$ и G p-разрешима, то группа G разрешима и по лемме VI.4.7 [3] можно считать, что QR — $\{q,r\}$ -холлова подгруппа при $q \neq r$ или QR — силовская Q-подгруппа при q = r.

Предположим, что $q\neq r$ и пусть $\pi=\{q,r\}$. Тогда $l_\pi(G)\leq 1$ по лемме 1.6 и $K=O_p(G)(QR)$ нормальна в G. Теперь $Q\leq A\cap K \lhd A$ и $R\leq B\cap K \lhd B$. По свойствам B-групп (Q не содержится в собственной подгруппе, нормальной в A) $A\leq K$. Аналогично, $B\leq K$. Поэтому $G=O_p(G)(QR)-p$ -замкнутая группа.

Пусть q=r. Если $l_q(G)=1$, то $O_p(G)(QR)$ — нормальна в G и опять $G=O_p(G)(QR)$ — p-замкнутая группа. Пусть $l_q(G)>1$. Так как силовская Q-подгруппа группы G является произведением двух циклических подгрупп Q и R, то по лемме 1.5 получаем, что q=2 и p=3. Теперь P_1 и P_2 — циклические подгруппы по лемме 1.4 и по лемме 1.5 $l_3(G) \le 1$.

(2) Введем следующие обозначения: $A = [Q]P_1$, $B = [R]P_2$, где P_1 и P_2 — силовские p-подгруппы в A и в B такие, что P_1P_2 является силовской p-подгруппой группы G (см. лемму VI.4.7 [3]), Q — силовская Q-подгруппа из A, R — силовская r-подгруппа из B.

Если p>2, то P_1P_2 — метациклическая группа по лемме III.11.5 [3] и $l_p(G) \le 1$ по лемме 1.5. Теперь $K=O_{p'}(G)(P_1P_2)$ нормальна в G, поэтому $P_1 \le A \cap K$ и $A \cap K$ нормальна в A. По свойствам B-групп получаем, что $A \le K$. Аналогично, $B \le K$ и K=G-p-нильпотентная группа.

Пусть p=2. Тогда силовская 2-подгруппа P_1P_2 в группе G является произведением двух циклических подгрупп. По лемме 1.5 либо фактор-группа $G/O_{2',2}(G)$ имеет нечетный порядок, либо изоморфна S_3 .

Пусть $G/O_{2',2}(G)$ имеет нечетный порядок. Тогда $P_1P_2 \leq O_{2',2}(G)$ и $A \cap O_{2',2}(G)$ — нормальная подгруппа в группе A, причем $P_1 \leq A \cap O_{2',2}(G)$. Это возможно лишь когда $A \leq O_{2',2}(G)$. Аналогично, $B \leq O_{2',2}(G)$ и $G = O_{2',2}(G)$ — 2-нильпотентная группа. Если $G / O_{2',2}(G) \simeq S_3$, то $3 \in \pi(G)$, что исключается условием (2) теоремы.

(3) Утверждение следует из теоремы 2.1.

□

3 О произведении сверхразрешимых *В*-групп

Теорема 3.1. Пусть A — сверхразрешимая B-подгруппа конечной группы G и пусть G = AB, где B — циклическая или сверхразрешимая B-подгруппа. Тогда третий коммутант G^m — абелева 2-группа и $n(G) \leq 3$.

Доказательство. Согласно лемме 2.7 [1] все силовские подгруппы в A и в B циклические. Если группа G имеет нечетный порядок, то по теореме Берковича [7] группа G сверхразрешима. В частности, коммутант G' нильпотентен. Так как силовские подгруппы в G метациклические, то G' – метациклическая подгруппа и G''' = 1.

Далее считаем, что группа G имеет четный порядок. Если силовская 2-подгруппа в G циклическая, то G 2-нильпотентна, в частности, разрешима. Если силовская 2-подгруппа в G нециклическая, то A и B имеют четные порядки и в каждой из них имеется циклическая подгруппа индекса ≤ 2 согласно лемме 1.1 (3). По теореме В.С. Монахова [8] группа G разрешима. Несложно проверить, что условия теоремы наследуются фактор-группами, поэтому группа G примитивна: $\Phi(G) = 1$, G = [N]M, $N = F(G) = O_p(G) = C_G(N) - C_G(N)$ единственная минимальная нормальная в G подгруппа, m — максимальная подгруппа и $M_G = 1$. Так как N дополняема в силовской p-подгруппе, то |N| = p или $|N| = p^2$ согласно леммам 2 и 3 [6]. Если |N| = p, то G сверхразрешима [6, лемма 5] и теорема справедлива. Если $|N| = p^2$, то силовская р-подгруппа в группе G нециклическая, поэтому p делит порядок подгруппы A и порядок подгруппы B. Кроме того, обе подгруппы A и B имеют нормальные силовские р-подгруппы порядка р. Так как В-группа с нормальной силовской подгруппой простого порядка является группой Шмидта, то применима теорема из [9], по которой G''' – абелева 2-группа и

Пример 3.1. Группа GL(2,3)=AB является произведением B-группы $A\cong S_3$ и циклической 2-группы $B\cong C_8$. Производная длина GL(2,3) равна 4, а нильпотентная длина GL(2,3) равна 3. Этот пример подтверждает точность полученных в теореме верхних границ для нильпотентной и производной длин.

Следствие 3.1. Пусть A и B — B-подгруппы конечной группы G нечетного порядка и пусть G = AB. Если A и B сверхразрешимы, то G сверхразрешима.

Следствие 3.2. Пусть A и B — сверхразрешимые B-подгруппы конечной группы G и пусть G = AB. Если |A| нечетен, то G 2-нильпотентна и $l_n(G) \le 1$ для всех $p \in \pi(G)$.

Доказательство. Согласно лемме 2.7 [1] все силовские подгруппы в A и в B циклические. Силовская 2-подгруппа из B является силовской 2-подгруппой группы G, поэтому G 2-нильпотентна. Силовские подгруппы нечетного порядка в группе G метациклические. Применяя лемму 1.5 получаем, что $l_n(G) \le 1$ для всех $p \in \pi(G)$. \square

Пример 3.2. Пусть p — простое нечетное число и C_p – циклическая группа порядка p. Эта группа обладает автоморфизмом α порядка 2. Зададим отображение $\phi: S_4 \rightarrow <\alpha>$ следующим образом: $\phi(\tau) = \alpha$, если τ – нечетная перестановка и $\phi(\tau) = 1$, если τ – четная перестановка. Тогда ϕ – гомоморфизм группы S_4 на $<\alpha>$, ядро которого совпадает с A_4 . Рассмотрим полупрямое произведение $G = [C_n]S_4$ относительно гомоморфизма ф. Тогда $G = S_3([C_n] < (1234) >)$ есть произведение двух сверхразрешимых В-подгрупп, причем G – не 2-нильпотентная группа и $l_2(G) = 2$. При p = 3 построенная группа не 3-замкнута. Этот пример показывает, что произведение двух сверхразрешимых В-подгрупп может быть несверхразрешимой группой, в частности, 2-длина группы может быть > 1.

Пример 3.3. Полупрямое произведение $[E_{7^2}]S_3$, в котором симметрическая группа S_3 неприводимо действует на элементарной абелевой группе E_{7^2} порядка 49, является минимальной несверхразрешимой группой, она 2- и 3-сверхразрешима, но не 7-сверхразрешима. Группа

$$[E_{\gamma^2}]S_3 = ([U]Z_2)([V]Z_3),$$

 $E_{\gamma^2} = U \times V, U \simeq V \simeq Z_7$

является произведением двух сверхразрешимых B-подгрупп порядков 14 и 21.

ЛИТЕРАТУРА

- 1. *Княгина*, *В.Н.* О произведении *В*-группы и примарной группы / В.Н. Княгина // Проблемы физики, математики и техники. -2017. -№ 3 (32). С. 52–57.
- 2. *Княгина*, *В.Н.* О *p*-длине произведения двух групп Шмидта / В.Н. Княгина, В.С. Монахов // Сибирский математический журнал. -2004. -T. 45, № 2. -C. 329-333.
- 3. *Huppert*, *B*. Endliche Gruppen I / B. Huppert. Berlin Heidelberg New York, 1967.

- 4. *Монахов*, *В.С.* Введение в теорию конечных групп и их классов / В.С. Монахов. Минск: Вышэйшая школа, 2006.
- 5. Монахов, В.С. Подгруппы Шмидта, их существование и некоторые приложения / В.С. Монахов // Труды Укр. матем. конгресса 2001.- Киев: Институт математики НАУ. -2002.- секция № 1.- С. 81-90.
- 6. *Монахов*, *В.С.* О частичной сверхразрешимости конечной факторизуемой группы / В.С. Монахов // Доклады НАН Беларуси. -2001. T.45, № 3. C.32–36.
- 7. *Беркович*, Я.Г. О разрешимых группах конечного порядка / Я.Г. Беркович // Математический сборник. -1967. -T. 74, № 1. -C. 75–92.

- 8. Монахов, В.С. О произведении двух групп, одна из которых содержит циклическую подгруппу индекса ≤ 2 / В.С. Монахов // Математические заметки. 1974. Т. 16, № 2. С. 285—295.
- 9. *Монахов*, *В.С.* Произведение сверхразрешимых групп Шмидта / В.С. Монахов // Известия Гомельского государственного университета имени Ф. Скорины. 1999. № 1. С. 41–46.

Поступила в редакцию 13.06.2024.

Информация об авторах

Княгина Виктория Николаевна – к.ф.-м.н., доцент