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Annotanusi. J{ii MHOrOKOMIIOHEHTHOrO MaTtpuuHoro ypashenus (I',0, +m)y =0 BBOAUTCS NOHATHE BHYTPEHHEH CHUMMeT-
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JIOJDKHBI COXPaHATh MaiOpaHOBCKYIO HPHpPOAY Tonei. DTo o3Hauaer, uto ecam QyHkmus WV, sBmgercs neifcTBUTENBHOIM
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Abstract. We start with the the multicomponent matrix equation (I',0, +m)y =0, and introduce the concept of the intrinsic

W
symmetry. These symmetries should preserve the form of the basic equation. The relevant Lagrangian should be invariant under
the intrinsic symmetry transformation. We will impose one additional requirement on symmetry transformations: such trans-
formations should preserve the Majorana nature of the fields. This means that if the function ¥, is real (imaginary) part of the

wave function, then after symmetry transformation the function remains real (imaginary). The situation for massless field

[0,y =0 is substantially different. The Lagrangian invariance with respect to intrinsic symmetry transformation for massless

case coincide with that for massive case. The main accent will be done on multicomponent Majorana fields, which can be
related to one, two, three and four Dirac fields.
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Introduction
The theory of relativistic wave equations is the
base for description of the elementary particles and
their interaction. It started with the investigations of
P.AM. Dirac [1], W. Pauli [2], and M. Fierz [3].
These studies were proceeded by H.J. Bhabha [4]
and Harish — Chandra [5]. They proposed for de-
scription of particles to apply the first order equa-
tions in matrix form
(0, +mY¥ =0, 0.1)

where W stands for wave functions, I', designates

square matrices, m is the mass parameter.
In this field, the investigation by I.M. Gelfand
and A.M. Yaglom [6] in which the general method
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for constructing the wave equations in matrix form
(0.1) for particles with any sets of spin and mass
states was developed was very important. Substan-
tial contribution in this theory was done by F.I. Fe-
dorov et. all [7], [8]. Important contribution in study-
ing the algebras of the matrices I', and develop-

ment of the methods of calculation was done by L.A.
Shelepin [9]. Also significant contribution was done
by V.I. Fuschich and A.G. Nikitin [10], [11]. They
proved existence of invariance for many physical
equations on the base of non Lie-like symmetries.
There exists a special way for describing the
intrinsic degrees of freedom and additional charac-
teristics of the particles, it is based on the use of
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extended sets of representations of the Lorentz
group. The known example is the Dirac-Kéhler sys-
tem referring to the particle with two spin states
(s=0,1) and degeneration in intrinsic parities.
Firstly, the Dirac-Kéahler equation was formulated
in tensor form by C.G. Darwin [12]. For describing
the electron in external Coulomb field he proposed
to apply the complicated tensor system of equations.
In this way, he derived the energy spectrum in pres-
ence of external Coulomb field which coincides
with that in the Dirac theory. Later on, this Darwin
equation was rediscovered by many researchers. The
mostly known is the paper by E. Kéhler [13], where
the formalism of differential forms was used. In the
papers of V.I. Strazhev with coauthors [14], [19],
this system was studied in detail within the conven-
tional theory of relativistic wave equations.

Intrinsic symmetries for massless Dirac equa-
tion were considered many years ago by W. Pauli
[20] and F. Gursey [21]. The main goal of the pre-
sent paper is to generalize their approach to the cases
of 2, 3, 4 Dirac fields, both massive and massless,
the accent will be given to the case of Majorana par-
ticles related to 1, 2, 3, 4 bispinor fields.

1 Basic Definitions

Let us start with the matrix equation and corre-
sponding Lagrangian

(L0, +my=0, L=-y™([,0, +my. (1.1)
Under the intrinsic symmetry transformations we
mean linear transformations W', =Q,,¥, which
obey a number of conditions. They should preserve
the form of equation (1.1), this leads to

(T,0,+mQy=0 = (I ,0,+m)y'=0, (12)

[o.r,] =0. '
Lagrangian (1.1) should be invariant under the trans-
formation Q, this requirement provides us with the
following restriction
om0 =n. (1.3)

We will impose one additional requirement on
symmetry transformations. Such transformations
should preserve the Majorana nature of the field.
This means that if the function ¥, is real (imagi-
nary) part of the complete wave function, then after
symmetry transformation the function ¥', =Q0,,'¥,
remains real (imaginary). Henceforth, this require-
ment is called the Majorana condition. Now let us
specify the massless case

[,0,y=0. (1.4)
The requirement of invariance for that equation
leads to two alternative restrictions
[o0.0v=0=[9.I'] =0,
-I0,0y=0=[0,I' ] =0.

Additional requirement of Lagrangian invari-

ance also leads to two possibilities. One is

(1.5)

L'=1L, [Ql,l“u l =0; it reduces to yet known con-

straint (1.3), which arose in the massive case. The
other possibility is as follows

L'=-L]0,T,] =0;
whence we obtain O;nI’,Q, =—nI,. Keeping in
mind the relation [QZ,FJ =0, we conclude that

the last relation is equivalent to the known restric-
tion (1.3). Thus, the Lagrangian invariance with re-
spect to intrinsic symmetry transformation both for
massive and massless cases assumes one and the
same constraint (1.3).

For infinitesimal one-parametric intrinsic
symmetry transformation Q =1+ wJ, relation (1.3)
takes on the simple form

(o))’ n=-nanJ. (1.6)

2 One Dirac Field
Let us consider one Dirac equation for a parti-
cle with nonzero mass (y,0, +m)y =0, where y

transforms as a bispinor; we used the metric with
imaginary unit, x, = (x,ict). Below we will apply
Majorana representation to the Dirac matrices [22]:
Y,=0,®06,,y,=0,81,, @1
y;=0,®0,,7,=0,®0,,
o, designate the Pauli matrices. Allowing for identi-
ties v, =v,,v, =—Y,,0, =0,,0, =—0,, we get
(Ylal +7,0, +750; +7,0, ""m)\l’* =0. (2.2)
Summing and subtracting two last equations, we
obtain (I' 0, +m)¥ =0, where the 8-component
wave function ¥ has the structure
Y=,y )y =
Ly ey, &Y
V2 NG ’
the matrices I', are defined by the formula
[, =1,®y,. In this Majorana basis, the most gen-
eral form of transformation Q (1.2) is
0- 9 4
9 9xn
8-dimensional symmetry transformations are de-
composed into the linear combinations
0=l +oJ +n,J,+0,J;, (2.5)
the matrices J, satisfy the commutation relations
for su(2):

®,=9q®1,, q, <C;, (2.4)

c ic c
J=—®I, J =2®1,,J =201,
1 B 4>v2 B 4273 ) 4 (2.6)

[V, /] =ig,J,.
The above Majorana condition leads to the fol-
lowing restrictions on parameters: ®, is imaginary,

ik

and ®,,0, are real, below we will apply the
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notations , =iQ),,0, =Q,,m, =Q,. The determi-
nant of the O equals
detQ = (—1—0012 -0, -, +o)02)><

><(1—col2 -0, -0, +0)02)><
x(-i—0" -0, -0+, )x
><(i—(ol2 -0, -0, +(002)+1;

because the total multiplier at Q has no physical
meaning, we set det O =+1, so obtaining

(—1—0)12 -0, -0, +c002)x
><(l—ool2 -0, -0, +o)02)><
x(—i—mlz -0, -0, +o)02)><
x(i-0 -0, -0, +0)02) =0.
whence we get two alternative possibilities
2 2 2 2
Q' -, -0, +o,” =1, 27
2 2 2 2 :
Q -, -0, +o, =-1.
The existence of Lagrangian formulation (1.2) leads
to additional restrictions: the symmetry transforma-
tion may include only one generator J, :
0=l +iQJ; (2.8)
correspondingly relations (2.7) take on the form
Q' +o, =1, Q’+o, =-1. (2.9)
It is readily verified that the Majorana condition

forbids the second variant in (2.9). The finite trans-
formation has the structure

Y=oy Iy, Y=oy Hiy, (2.10)
O’ +o,” =1.

Real and imaginary parts get entangled by this trans-

formation, however the spiting into real and imagi-

nary parts is not destroyed. Transformations (2.10)

make up the Abelian group U(1).

In fact, this model can be easily reduced to the
form when we may speak about two 8-dimensional
Majorana fields, real and imaginary. Indeed, let it be
iy, =¢,,iy, =¢, then (2.9) are re-written as
follows

Y, =0V, +Ql$r’ Wi/ =0y, +Q1${'

3 The System of Two Dirac Fields
Let us consider the system of two Dirac fields

(v.0, +my, =0, (y,0, +m)y, =0, (3.1)
where y,,y, stand for two bispinors, as in the

above we apply the Dirac matrices to Majorana ba-
sis. Further we derive the standard matrix form of
the 16-component equation

(T8, +m¥ =0, ¥ =(y], sy, v)),
r,=140®y,.
The most general form of the relevant symmetry

transformations  should have the structure
0=q®I,, where g is a certain 4x4 matrix. This

(3.2)
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matrix can be decomposed into the complete set
LuYs =Y\Y2V3Yas VY Yss Y, Yy,  Where indices in
Yy, take the the values {23,31,12,14,24,34}.

Therefore, the transformations O may be presented
with the help of 16 basic elements

L J" =y, ®1,J° =y,®1,,

16>

s . (3.3)
JV =iy, s @1, I =iy,y, @,

expressions for J* and J" are multiplied by
imaginary unit in order to have corresponding gen-
erators Hermitian. Let us numerate the generators as
follows
I JJL T T
I s Ty, Y J s

Applying the Majorana requirement to 1-parametric
transformations

O=1l+0J_,s=1,..,15, (no summing in s) (3.5)

59802

(3.4)

we get additional restrictions on parameters:
—imaginary o, ©;, ®,, 0, ©,, ®,;
—real ®,, ®,, ®;, O, O, O, O, O3, O5.
From the Lagrangian invariance we get 15 re-
strictions on generators
(o J)n=—o,J,s=1.,15n=1,®7y,. (3.6)
The direct verification of equations (3.6) with
the use of explicit expressions for generators shows
that only 6 generators satisfy these constraints
J.J5,J5,J4,J,,,J,,- Thus, the Lagrangian is invari-
ant only under l-parametric transformations with
generators
J=v,®1,J,=y,81,,
Jy =iy, @1, J; =iv,y @1, (3.7)
Jy=iv,ys @I, Jyy =iv,7, ®1,.
These generators lead to finite transformations with
the structure
R iR||Y,
iR, R,||i'Y_
where R,R,,R;,R, are real 8x8 matrices, and
Y
transformations entangle 8 real and 8 imaginary
components, however the splitting into real and
imaginary part is not destroyed. It is readily verified
that two triples of generators

) (3-8)

Y are real 8-dimensional columns. These

4+

1 1 1
Sy= IS =208 =

14>

(3.9)
, 1 , 1 , 1
A\ :EJ],SZ :EJ3’S3 :EJ]]’

obey the Lie algebra su(2): [S,,S,] =iS,e, and
[S/,8;] =iS;e;. These two sets commute with
each other, [S[,S/'. 1. =0. In other words, these trans-
formations make up a 6-parametric group with the
structure SU(2)® SU(2).
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4 The System of Three Dirac Fields
Let us consider the system of three Dirac fields
(7,0, +my, =0,i=1,2,3, 4.1)

where vy, ,vy,,y, are bispinors. We obtain the stan-

dard matrix form of the equation
(ruap i n;l)\Pr: O: rlr—l i 1'16 ®iyu’ (4'2)
W= (W W0, W WL Yo, 35).
Intrinsic symmetry transformations Q are presented
by complex 24x24 matrices, which commute with

the matrices I',. In Majorana basis, the most general

structure of the matrix Q is Q=g ®1,, where q is a
complex 6x6 matrix. This matrix ¢ can be decom-
posed in the linear combination of the basic matrices
I, 0,81, [,®a,, o,®a,; 4.3)
where o, stand for generators of the group SU(3),
A=1+8.
Let us take 8 Hermitian generators o, for the
group SU(3) as follows [23]:

33

11 33 22 3 23 32
o,=e —€e’, a,=e"—e’, a,=e" +e",

a,=e’+e, o, ="+, a0, =—i(e” —-e”), (4.4)
.o 31 13 .o 12 21
o, =—i(e’ —e”), ay=—i(e” —e
where ¢, stand for the elements of the complete

matrix algebra. Their explicit form is

1 0 O 00 O 0 00
o,=0 0 0, a,={0 1 0], a;=|0 0 1,
0 0 -1 00 -1 010
0 1 010
o, =0 0, a;={1 0 0], (4.)5)
0 00 0
00 O 0 0 —i 0 - O
a;=0 0 —if, a, =10 0 O], ag={7 0 O0f.
0 ¢ O i 0 0 0 0 O
They relate to Okubo matrices [24] in the fol-
lowing way
2 0 0 010 0 0 1
a}zéo -1 0,a =0 0 O, ¢'=0 0 0,
0 0 -1 00 0 00 0
0 00 -1 0 0
ay=|1 0 0, azzé 0 2 0,
0 00 0 0 -1
00 0 0 00
a,=0 0 1, a,=[0 0 0], (4.6)
00 0 1 00
00 0 -1 0 0
a;=[0 0 O,aiz% 0 -1 0.
010 0 0 2

10

We can easily derive the following relations between
these two sets

o, =2a +a, o, =a +2a;, o, =a, +a;,
3 1 2 1 .o 3 2
o, =a, +a;, o =a; +a,, o, =—i(a, —ay),
. 3 1 . 2 1
o, =—i(a; —a,), o4 =—i(a; —a,).
In application of the group SU(3), the Gell-

Mann matrices are commonly used [23], they are
related to the above matrices o, (4.4) by the formulas

1 1 1
A, 25(15, A, :5(18, A, 25(011 —a,),
1 1 1
}\.4 =5a4, }\.5 25(17, }\‘6 =Ea3, (48)

A, =%o¢6, Ag =%(oc1 +a,).
Let us turn back to the study of the symmetries Q for
a 24-component field. The relevant transformations
are determined by 35 Hermitian generators; it is
convenient to numerate them
Jd; > (0,®1)®1,,

JJy 2> U, ®0,)®1,, (4.9)

Jyedys = (0,®0,)1,.

It should be noted that only generators
J,,J,,J; have quadratic minimal polynomial, the
remaining 32 generators have the cubic minimal
polynomial: 3—>A°=1;32>A’=L  Minimal
polynomials for generators based on Gell-Mann
3x3 matrices have more complex structure:

N

oy, >N =1 J, > +—h==;
3 (4.10)

5., 4
JigrT oy > W =202 ==
19 27 35 3 9

for 28 remaining generators the minimal polynomi-
als are cubic A’ = L. Below we will apply the gen-
erators (4.9).

The Majorana condition for 1-parametric trans-
formations leads to the following constraints for 35
parameters :

—real

®,, O, O, O, O, O,
®pp5 O35 Wy, Dy, By, Dy (4.11)
(018 s 0)20 s (‘022 ’ (‘023 ’ (‘025 ’ 0)27 ’ 0)28 s (D}O s
— imaginary

®;, Os, Og, Oy, D5 Dy, Op5, g7, (4.12)

@95 Oy, Wy, Wyg5 Wyg, Wy, M3y
The Lagrangian requirement (1.6) is satisfied only

for imaginary parameters (4.12).

Thus, the intrinsic symmetry transformations

are determined by the following 15 generators

J=(0,0)®1,, J,=(,80,)®1,,
Jo=U,Q0,)®1,, J,=(1,Qa,)®1,,
J,=(0,90a,)®1,, J;=(0,®0,)Q1,,

Ipo6remvr usuxu, mamemamuku u mexnuxu, Ne 1 (58), 2024
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Jiy=(0,®0,)®1,, Jis=(c,®0,)®1,, (4.13)
Jig=(0,805)®1,, Jys=(0,Q0,)®1,,
Jy=(0,80,)81,, J,, =(0,®0a,)®1,,
Jy=(0;®0,)®1,, J;, =(0,Q0,)®1,,
Jys=(0,®04)®1,.
Only the generator J, has a quadratic minimal poly-
nomial, the 14 remaining ones have a cubic minimal
polynomial. The study of commutators for genera-
tors shows that there exist two triples of generators
which make up subgroups isomorphic to su(2):

1

E(J93J137J14) =(SpSz’Ss)a
' (4.14)
E(JloﬂJIZ’Jls) =(S1,aS2l7$3l)~

All the generators in sets (4.14) have cubic minimal
polynomial; besides, the generators from different
triples commute with each other. Recall that these
triples are realized on the matrices of dimension
24 x24.

Let us write down the structure of the finite
1-parametric transformations relation to generators
(4.13). The finite 1-parametric transformations for
generators with minimal polynomial are

U =1+isina) +(coso—1)A%; (4.15)
for the case of a quadratic polynomial we get
U =coso —isin aA.

Because all 15 one-parametric transformations
are symmetries, we can conclude that all products of
them will provide us with symmetries as well.

5 The System of 4 Dirac Fields
Let us consider the system of 4 Dirac fields

(’Yuﬁu + m)\V, = 07 (l = 1’ 2: 3’ 4)’ (5 1)
whence we get the standard matrix equation
Y= (\Vl ,W2’W3’\|’43W1’\|’2W3\|’4)~
Transformations of intrinsic symmetry Q are
determined by complex 32x32 matrices, they
should commute with the matrices I',. In Majorana
basis the most general form of Q is as follows
0=q®1I,, where g stands for a complex 8x8§
matrix. It can be decomposed in the complete set of
basic 8x8 matrices:
I, v, ® L, v ®1,,7,v:® 1,7y, ®1,, 53)
1, ©0,7,90,7,1,90,7,y,®0,[,®c,.

The symmetry transformations for a 32-compo-
nent field are determined by 63 generators; let us list
them as shown below

J,2>JJ o (1, 81,)®1,,

J,=>J, > ®1,)®1,,
Jps > Jgdy 2> iy, 159 1,)® 1,
Jiw) = JioeJis > i(yuyV ®I1,)®1,,

Problems of Physics, Mathematics and Technics, Ne 1 (58), 2024

Jy > Jigdyy > (1, ®0,)®1,,
I >y dyy =2 (15;800,)01,,
> Jydyy 2i(y,Ys®0,)® 1,

(5.4)

J[u5i]
Sy = JazeJ o 2 i(y,7, ®0,)® 1,

Jy = Jgdg > U, ®0,)Q1,.
All generators are Hermitian, and have a quadratic
minimal polynomial, J> =/. The Majorana condi-

tion for 1-parametric transformations leads to the
constrains on 63 parameters o :
—real 35
@y, 0y, W5, W, Wg, Oy, Wy, W3, D5,
@75 Wy95 Dy, W)y, W35, W7, Mg, Wy,

(’031’('033’0‘)35 ’0‘)37’('039’0‘)41’ (043 ’w45’0‘)47 s

(5.5)
0)49’ (051 ’wSZ’0)54’0‘)56’0‘)58’0‘)60’0)61’0)63;
— imaginary 28
(D]’(’03’0)7’0)9’0)11’0)14’0)16’(‘0]8’(‘020’ (5 6)

Co22 ’ Co24 s (026 > 0)29 > 0)32 ’ Co34 s (036 ’ (038 >
('040 ’ 0‘)42 ’ 0‘)44 ’ Co4(7 ’ Co48 ’ 0‘)50 s (053 ’ 0‘)55 ’ 0‘)57 > (059 ’ 0‘)62 °
The Lagrangian formulation (1.6) of the theory
is possible only for 28 one-parametric transforma-
tions with imaginary ® (5.6). Thus, the intrinsic
symmetry transformations are determined by the 28
generators
J=y,®,)®1,,J,=(y,81,)®1,,
J;=i(y,ys ®1)® 1, J, =i(y,ys ®1,)®1,,
Jy=i(v;1, ®L)® 1, J, =i(y,y,®1,)®1,,
Je=,®0)®1,,J;=(y,®0,)®1,, 5.7)
Jy =(1,80,)®1,,J,, =(y;®0,)®1,,
Ju=;,®90,)®1,,J,,=(y,®0,)®1,,
Jyy =(15©0,)®1,,J;, =i(y,y;®0,)®1,,
J3y =i(y,15®06)®L,, Jy =i(y,7; ®0;)®1,,
Jy5 =i(Y,Y5s®0,)®1,, J,, =i(y,y; ®0))®1,,
Sy =i(y,ys®0;)® 1, J,, =i(Y,7,¥0,)® 1,
i =737, ®0)® 1, g =i(y;7,®0,)® 1,
Jso =i(y,7, ®0,)®1,, J5;, =i(y,7,®0,)®1,,
Js =i(y,y,®0)®1,,J,, =i(y,y,®0,)®1,,
Iy =i(y37,®0,)®1,,J, =, ®0,)®1,.
All the generators have dimension 32x32, and

can be presented with the use of blocks of dimension
8x8. The study of the structure of these generators
permits us to make the following conclusions.

1. Among the generators (5.6) one can separate
56 triples, each of them obeys the commutative rela-
tions of the Lie group su(2). For instance the triples,

(J75J205029)s (J7,J35,T50)s (S0, 49, J55) and so on.

2. For each of 56 triples there exist 10 other
triples which commute with the generators from the
first triple. For instance, the triple (J,J5,J5,)

commutes with the following 10 concomitant triples

11
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(Jl s J20 s JSO )’ (Jl s J24 s J48 )’ (Jl s J29 s J32 )’
(J7 > J70 s J29 )’ (J7 > J32 > JSO )’

("]70 4 J4O s JSS )’ (‘]20 4 J4O > J48 )’ (‘]24 > J32 > "]55 )’ (5 8)
(J24 4 J40 4 JSO )’ (‘]29 s J48 4 JSS )
The generators from the basic triple do not enter
concomitant 10 triples

[Jbaiic s Jc/(lmcomit ]— = O! A = 1 _109
) (5.9)
Jbasic M Jcl?ancomit = 0
In other words, each triple generates 10 subgroups
with the structure su(2) ® su(2).

6 The System of One Massless Dirac Field
Let us consider one Dirac equation with zero
mass y,0,y =0, it may be presented in matrix form

ro,¥=0, where ¥ is an 8-component wave

function (2.3). Because the field under consideration
is massless, the intrinsic symmetry transformations
may commute or anticommute with the basic matri-
ces [Q,I,] =0, [0,,',], =0. The first condition
was analyzed in the above. So we are to study only
the second condition. The structure of symmetries
Q, should be as follows Q, =g, ®y,, where g,
stands for an arbitrary complex matrix 2x2. Be-
cause the matrix ¢, can be decomposed in the set of
1,,6,,0,,0,, the symmetries Q, are determined by
4 elements (for massless cases, we will designate
generators by symbol L):
L =0,®y;, L, =0, ®ys,
Ly =0,®y;, L, =1, ®;.

The Majorana condition leads to the following re-
strictions on parameters of 1-parametric transforma-
tions O, =1+QL: Q is real, Q,, Q,, €, are
imaginary. The existence of the Lagrangian formula-
tion (1.6) is possible only for one generator
L =0o,®y,. Let us recall that the first symmetry

6.1)

transformation Q, leads to the following result
J, =0,®1,, (o, isimaginary). (6.2)
We can see that transformations corresponding to J,
and L, are substantially different. Let us consider
the finite transformations Q, and 0, :
O =ayl,+iaJ,, Q,=b1,+bL; (6.3)
a,,b, are real. For these symmetries, the Lagrangian
condition O'NQ =1 leads to restrictions
a; +a’ =1, b, =b =1. (6.4)
Evidently, the product of O, and O, also is a sym-
metry transformation
0=00,=0,0 =
=a,bl; +a,b L +ibaJ, +iabJ L,
where J, L, =L J, =1, ®v,. Itis readily proved that
the Lagrangian condition for the transformation (6.5)
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(6.5)

leads to restriction

(@ +a} )b} ~b}) =1. (6.6)
Imposing the proper normalization, we rewrite the
formulas (6.3) as follows

0O, =cosalg + is'in o, 67)

0, =cosh P/, +sinh BL,.

7 The System of Two Massless Fields
Let us consider the system of two equations

v.0.¥,=0,7,0y,=0=T,0%Y =0, D)
P = (w1, v, v Wh).
The intrinsic symmetry transformations obey

the commutation or anticommutation relations
[0,,T,] =0,[0,,T',], =0. The study of the com-

mutation condition was performed in the above. Be-
low we shall analyze the anticommutation condition.
The structure of relevant matrix @, should be
0, =q®y,. The matrix ¢,, can be decomposed
into the set of 16 matrices
Lys =1102Y3Y a0 Yo Y Yss VY

Therefore the intrinsic symmetry transformations
0, may be defined with the help of 15 generators

L'=v,®y,, L =vy,®ys,

o . (7.2)
=1y,7s ®vs, LT =1y,y, ®ys.
Let us numerate them as follows
'—>L.L,LC - L,
(7.3)

¥ > L..L, 'Y - L,..L;.

For 1-parametric transformations Q, =1+QL,
obeying the Majorana condition, we find the follow-
ing restrictions on parameters

—real Q,Q,,Q,,Q,,Q,,,Q,,;

— imaginary

QZ’ Q4’ QS’ QG’ QS’ QIO’ QIZ’ Ql}’ QIS'
The study of Lagrangian condition (1.6) shows that
the appropriate are the generators corresponding to
real-valued parameters
L =y, ®v5, Ly =7, ®v5, L, =iv,7, s, (7.4)
Ly =iy,ys ®vs, Ly =iy,v5 @5, Ly = 17,7, ®5.
Let us study the Lagrangian condition for finite
transformations Q, (1.3):
Q;nQZ =n, n=1, ®Y4s
Q,=bl +bL +bL,+b L, +bL,+bL, +bL,,;
whence we find two solutions
1) O, =bylis +bL +b,L; +bsL,,
bl —b} —b; —b; =1;
2) Q,=bl¢+bL,+bL,+bL,,
by —b; —b; =b; =1; (7.5)
all parameters b, are real-valued, so in parametric

space the signature is (+,—,—,—).
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Similarly, we consider the Lagrangian condi-
tion for finite transformations Q, (1.3)
O'mQ =n, n=1,0v,,
O =a,l +iaJ, +ia,J, +
+ayJ, +ia,J, +iaJ, +iagJ,,,
whence we obtain two solutions
) O =ayl +iaJ, +ia,J, +ia,J,,,
2 2 2 2 .
a, +a; +a, +a; =1;
2) O, =ayl, +ia,J, +ia,J, +iaJ,,,
a, +a;+a, +a; =1; (7.6)
all parameters a, are real, in the parametric space
we have the signature (+,+,+,+). In relations (7.5)

and (7.6) all the generators are Hermitian.
Let us change the notations for the generators

1 1 1
S, :EJWSZ :EJ9’S3 :E‘]w

(7.7
, 1 p 1 P
51:§J1’S2:EJ3aS3:5J11’
1 1 1
Sy :ELW S5 :El@»ss :ELM’
1 1 1

Sl’ :EL],S; :EL3,S3' :EL”.

Then for symmetries O, we get more symmet-
rical formulas
1) O =a,l+ia,S, +ia,S, +ia,S,,
[S;,S;]1 =—iS;e
2) O, =a,l, +ia,S +ia,S, +ia,S;,
[S/,S7] =—iSie;.,
in (7.8) we can see two commuting 3-parametric
groups with the structure su(2), [S,;,S7] =0. For

(7.8)

ijk >

the case O, we have

1) Q, =bd s +b;s, +b,s, +bs,,

2) O, =b,I +bs| +b,s, +bs;. (7.9)
We can see that all four triples of the generators
from symmetries ¢, and O, are mixed in the fol-

lowing way:
[s;»s;1 =—ig;, S;.[s,57] =—ig,,S;, 7.10)
[S;,s,] =—is,&,,[S),s,] =—is;e .

Within the commutating relations (7.10) we can
separate two 6-parametric subgroups:
— the first is
(a,l\s +iaS, +ia,S, +ia,S, )(b,1,s +bys, +b,s, +bss),
[S;,S;1 =—iS,c8,.j,(,[s[.,sj]7 =—iS&y, .10
[Sis,] =—is ey
— the second is
(ayl ¢ +ia, S| +ia,S, +iasS;)(b,1\c + s +b,s, +bss;),
[S.,87] =—iS/e;,,[s],s,] =—-iSe,,
/ L T (1.12)

[S/,s7] =—is e
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These groups are isomorphic to SO(4) group
(see in [25]). Thus, the complete symmetry group
for 2 massless Dirac fields in Majorana approach is
SO(4) ®SO(4).

8 The System of Three Massless Fields
Let us consider the system of three Dirac fields

7,0, =0@=1,23)=T,0,¥Y=0, &1
Y= (W Wh WE Wi o, )
For symmetry transformations, two alternative con-
straints may be imposed
[0,T,]. =0, or [0,T,]=0. (82)
The first restriction was analyzed in the above. Here

we shall examine the second condition. The general
structure of the transformations Q, may be as fol-

lows O, =q®y,, where g is an arbitrary complex
6x6 matrix. Any such matrix may be decomposed
into the complete set
I, 0,®1, I,®a,, 0,00, (8.3)
where o, stands for the generators of group SU(3)
(see (4.4)), A=1+8. Therefore, intrinsic symmetry
transformations can be determined with the help of
36 basic elements
L =(0,9)®y;, L, =(I,®0,)®s,
L,=(c;®0,)®ys;
let us numerate them as follows
L—>L.L,L —>L.L, L, >L,.Ls. (85)
Taking into account the Majorana condition,
for 1-parametric transformations of the type
0, =1+QL, we find 21 and 15 restrictions on pa-

(8.4)

rameters (:
— imaginary
Qz» st Qw Qsa Qs’ Qw Qsa Qn’
Q]S’Q]9’QZO’QZI’QZZ’QZS’ (86)

Q,, 00,0, Qy, Q,, Qs Qo

24 28 292 30 31° 32 362
—real

QI’Q9’QIO’QII’QIZ’QB’QM’QIS’ (8 7)
Qlé’ QZS’ QZG’ QZ7’ QSS’ 934’ QSS'

Only 15 generators referring to real-valued parame-
ters satisfy the Lagrangian condition:
L=(0,®)®y,,L,=(1,80,)®Y,,
Ly=(1,®0a,)®y,, L, =, ®04)®y;,
L,=(c,®0,)®y;, L;; =(0,®0,)®s,
L,=(c,®0;)®vs, Lis =(0,®0a,)®v;,
Li=(0,80,)®v,, L, =(0,®0,) Dy,
Ly =(0,®0;)®Y;5,Ly; =(0, ®0,)®ys,
Ly =(0,;®04)®Yy5, Ly, = (0, ®0,) ®vs,
L, =(0,®0,)®y,;

referring to transformations O, 15 symmetry genera-

(8.8)

tors were given while considering the massive case
(4.13).
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Thus, for the case of three massless fields, we
have found 30-parametric group of intrinsic symme-
try. By direct calculation, we can readily find gen-
erators all triples with su(2) -structure in the set of

30%30. In particular, among 15 generators of the
type O, there exist only two such triples

Q] (J95J137']14)’(']109']125']15); (89)
among 15 generators of the type O, also exist only

two such triples:
Q2 (L9’LIS’LM)?(LlO’LlZ’LIS)' (810)

9 The System of Four Massless Fields
Let us consider the system of four Dirac fields
Y.0,¥, =0@1=1234)=T,0Y=0, ©.0)
Y= (W W0 Wi Wi W Vo, W3, W)
Intrinsic symmetry transformations should satisfy
relations [Q,,T',] =0 or [Q,,[" ], =0.

Because the first condition was studied when
considering the massive case, we will examine only
the symmetries of type Q,. Their general structure

may be of the form O, = ¢ ®y, where g is an 8x8
complex matrix. Any matrix ¢,, may be decom-
posed in the set of 64 elements
Ly, ®1L,ys®L,y,vs®1L,y,y, ®1,, ©2)
7, ®0,7,®0,,7,7;®0,,7,v,®0,,[,®0,.

The symmetries for this field are determined by
63 generators; they may be listed as follows
L, —>L..L,—>((,®)®y,

Li>L—>((y;®1,)®y,,

Lis— Le..Ly > i(y,y; ®1,)®ys,
L[M —>L,..Lis— i(yuyv ®1)®y,
Lw. —>Lg..L,, > (y“ ®c,)®y,,
L, > Ly..Lyy, > (y;,90,)®v,,
> Ly Ly, —)i(y“y5 ®0c,)®y,,

9.3)

L
Ly = Lis-Lgy > i(y,y, ®0,)®ys,
L,—>L,.L,—>(,®c)®y,
where i =1+3,u,v=1+4, [uv]=23,31,12,14,24,34.
All generators have the quadratic minimal equation,
L[’ =1. The Majorana condition for I-parametric
transformations leads to restrictions on parameters Q :
28 real parameters
Ql’ QS’ Q7’ Q9’ Qll’ Ql4’ Qlé’ QIS’ QZO’ QZZ’ (9 4)
sz sz Q297 Q32, Q34’Q367 sta Q40’ Q42’
Qs Qe Q4 ., Q,,Q.,,Q,,Q,,,Q

445 22465 2485 22505 = <535

usi

55° 57> 59> 622

35 imaginary parameters
Q,,0,,0,,Q,,0,0,,0,,0,,0,,0Q,,,0,,

Q0 0,,0,,0,,,Q,,Q,,0,,0,.,0,,

Qy,€255,Q55, 0y, Q55,0 , Q5 O, O, (9.5)

Q, Qs51, Qg Oy, O, Qi O, QL Q.
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The Lagrangian condition (1.6) is satisfied only for
28 one-parametric transformations with real-valued
Q (9.4). Thus, the appropriate symmetries of the type
Q, are determined by the following 28 generators:
Li=(1®L)®Y;, L =(v; ®1,)®vs,
Ly =i(y,ys ®1,)®ys, Ly =i(y,v; ®1,) Qs
L, =i(y,y, ®1,)®ys, L, =i(y,7, ®1,) s,
Ls=(y,®0,)®ys, Lz =(y, ®0;)®vs, (9.6)
Ly, =(y,®0,)®7y5, L, =(v; ®0,) s,
Ly = (v, ®0,)®75, Ly = (1, ®0,)®ys,
Ly =(vs®0,)®7s, Ly, =i(y,y; ®0,)®s,
Ly, =i(y,vs ®0,)®Ys, Lyg =i(y,7s ®0;)®s,
Ly =i(y;7; ®0,) @75, Ly =i(Y,7; ®06,) s,
Ly, =i(y,7s ®06,)®ys, Ly, =i(1,7, ®0,) ®s,
L =i(v;7,®0,)®v;, Lig =i(y;7, ®0;) @vs,
Ly, =i(y,y, ®06,)®y;, Ly; =i(y,y,®0,)®vs,
Ly =i(y,v,®0,)®y;, Ly; =i(y,7, ®0;) Qs
Ly =i(yyy,®0,)®v,, L, =(1,®0,) ;.
Their explicit form is omitted because of their bulki-

ness. All the generators have the dimension 32x32,

they may be presented shorter with the use of blocks
of dimension 8x8. Collecting together the genera-

tors of type O, (9.6) and generators of type (O,

(5.7), we get the complete symmetry group for the
system of 4 massless fields.

The detailed study of the structure of these
generators leads to the following conclusions.

1. Among all the generators of types O, and
0, (see (5.6) and (9.6)) one can find 56 pairs of

triples; in each pair the 6 involved operators obey
the commutation rules for algebra so(4). For in-
stance, two examples are

1, J5,J0) € 0, (L, Ly, Ly ) € O,
and

(J7:45:014) € O (L, Ly, Lyy) € O,
The complete list of pairs of triples has been found.
It should be noted that each triple of the type O,

obeys the su(2) algebra.

2. For each 6-element set there exist 10 other
sets (each of 6 elements) that commute with the initial
set. For instance, the basic set (J,,J;,J,,,L,L;,L,,)

11°
commutes with the following ones (each with the
so(4) structure):

(S5 dgsJ14sLys Loy L)y (55T 495 550 Lgs Ly s Lss )s
(J35:J i ds3: Ly s Ly Ly ), (Jo5 T 545T55)5 Lo, Ly, L),
(o> 3600575 Lo Ly, Lsy ) (145545 g5 Lias Ly s Lo ),

(V> Js60a2s Ligs Lg, Ly )y (Jag5 365 T3 Ly Lag, Ly ),
(Jaos T 125 63s Lags Lans Ly )s (J355 535S 35 Laso Lsy» Ly ).

The generators from the basic set do not enter the 10
concomitants sets:

Ipo6remvr usuxu, mamemamuku u mexnuxu, Ne 1 (58), 2024
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[, ,J ~JA

vasic > concomit 1= = 05 iasic concomit = 05

[Lysicr Lo ome ] =0, Lo NLE =0, A=1+10.
In other words, each basic 6-element set gives rise to
the algebra with structure so(4) ® so(4).

basic > basic

Conclusion

In the separate paper, we presented the results
of the analysis of internal symmetries for quantized
Dirac fields, massive and massless ones; also we
studied the internal symmetries in presents of elec-
tromagnetic and gravitation fields.

The authors are grateful to Professor V.A. Ple-
tyuchov for the assistance provided.
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