ДИРАКОПОДОБНЫЕ УРАВНЕНИЯ И ОБОБЩЕННЫЕ МАЙОРАНОВСКИЕ ПОЛЯ, ВНУТРЕННЯЯ СИММЕТРИЯ

П.П. Андрусевич ${ }^{1}$, В.А. Редьков ${ }^{2}$
${ }^{1}$ Брестский государственный колледж связи
${ }^{2}$ Институт физики имени Б.И. Степанова Найиональной академии наук Беларуси

DIRAC LIKE EQUATIONS AND GENERALIZED MAJORANA FIELDS, INTRINSIC SYMMETRIES

P.P. Andrusevich ${ }^{1}$, V.A. Red'kov ${ }^{2}$
${ }^{1}$ Brest State College of Communication
${ }^{2}$ B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus

Abstract

Аннотация. Для многокомпонентного матричного уравнения ($\Gamma_{\mu} \partial_{\mu}+m$) $\psi=0$ вводится понятие внутренней симметрии. Эти симметрии должны сохранять форму уравнения и соответствующий лагранжиан должен быть инвариантен относительно преобразования симметрии. Накладывается дополнительное требование: преобразования симметрии должны сохранять майорановскую природу полей. Это означает, что если функция Ψ_{A} является действительной (мнимой) частью волновой функции, то после преобразования функция остается действительной (мнимой). Исследованы многокомпонентные поля Майораны, которые могут быть связаны с одним, двумя, тремя и четырьмя полями Дирака, как массивными, так и безмассовыми. Установлены группы преобразований симметрии для этих полей.

Ключевые слова: обобщенные дираковские и майорановские поля, лагранэев формализм, внутренняя симметрия
Для цитирования: Андрусевич, П.П. Диракоподобные уравнения и обобщенные майорановские поля, внутренняя симметрия / П.П. Андрусевич, В.А. Редьков // Проблемы физики, математики и техники. - 2024. - № 1 (58). - С. 7-15. DOI: https://doi.org/10.54341/20778708_2024_1_58_7.-EDN: TZLPQY

Abstract

We start with the the multicomponent matrix equation $\left(\Gamma_{\mu} \partial_{\mu}+m\right) \psi=0$, and introduce the concept of the intrinsic symmetry. These symmetries should preserve the form of the basic equation. The relevant Lagrangian should be invariant under the intrinsic symmetry transformation. We will impose one additional requirement on symmetry transformations: such transformations should preserve the Majorana nature of the fields. This means that if the function Ψ_{A} is real (imaginary) part of the wave function, then after symmetry transformation the function remains real (imaginary). The situation for massless field $\Gamma_{\mu} \partial_{\mu} \psi=0$ is substantially different. The Lagrangian invariance with respect to intrinsic symmetry transformation for massless case coincide with that for massive case. The main accent will be done on multicomponent Majorana fields, which can be related to one, two, three and four Dirac fields.

Keywords: generalized Dirac and Majorana fields, Lagrangian formalism, intrinsic symmetry.
For citation: Andrusevich, P.P. Dirac like equations and generalized majorana fields, intrinsic symmetries / P.P. Andrusevich, V.A. Red'kov // Problems of Physics, Mathematics and Technics. - 2024. - № 1 (58). - P. 7-15. - DOI: https://doi.org/ 10.54341/20778708_2024_1_58_7 (in Russian). - EDN: TZLPQY

Introduction

The theory of relativistic wave equations is the base for description of the elementary particles and their interaction. It started with the investigations of P.A.M. Dirac [1], W. Pauli [2], and M. Fierz [3]. These studies were proceeded by H.J. Bhabha [4] and Harish - Chandra [5]. They proposed for description of particles to apply the first order equations in matrix form

$$
\begin{equation*}
\left(\Gamma_{\mu} \partial_{\mu}+m\right) \Psi=0, \tag{0.1}
\end{equation*}
$$

where Ψ stands for wave functions, Γ_{μ} designates square matrices, m is the mass parameter.

In this field, the investigation by I.M. Gelfand and A.M. Yaglom [6] in which the general method
for constructing the wave equations in matrix form (0.1) for particles with any sets of spin and mass states was developed was very important. Substantial contribution in this theory was done by F.I. Fedorov et. all [7], [8]. Important contribution in studying the algebras of the matrices Γ_{μ} and development of the methods of calculation was done by L.A. Shelepin [9]. Also significant contribution was done by V.I. Fuschich and A.G. Nikitin [10], [11]. They proved existence of invariance for many physical equations on the base of non Lie-like symmetries.

There exists a special way for describing the intrinsic degrees of freedom and additional characteristics of the particles, it is based on the use of
extended sets of representations of the Lorentz group. The known example is the Dirac-Kähler system referring to the particle with two spin states $(s=0,1)$ and degeneration in intrinsic parities. Firstly, the Dirac-Käahler equation was formulated in tensor form by C.G. Darwin [12]. For describing the electron in external Coulomb field he proposed to apply the complicated tensor system of equations. In this way, he derived the energy spectrum in presence of external Coulomb field which coincides with that in the Dirac theory. Later on, this Darwin equation was rediscovered by many researchers. The mostly known is the paper by E. Kähler [13], where the formalism of differential forms was used. In the papers of V.I. Strazhev with coauthors [14], [19], this system was studied in detail within the conventional theory of relativistic wave equations.

Intrinsic symmetries for massless Dirac equation were considered many years ago by W. Pauli [20] and F. Gursey [21]. The main goal of the present paper is to generalize their approach to the cases of 2, 3, 4 Dirac fields, both massive and massless, the accent will be given to the case of Majorana particles related to 1, 2, 3, 4 bispinor fields.

1 Basic Definitions

Let us start with the matrix equation and corresponding Lagrangian

$$
\left(\Gamma_{\mu} \partial_{\mu}+m\right) \psi=0, \quad L=-\psi^{+} \eta\left(\Gamma_{\mu} \partial_{\mu}+m\right) \psi
$$

Under the intrinsic symmetry transformations we mean linear transformations $\Psi_{A}^{\prime}=Q_{A B} \Psi_{B}$ which obey a number of conditions. They should preserve the form of equation (1.1), this leads to

$$
\begin{gather*}
\left(\Gamma_{\mu} \partial_{\mu}+m\right) Q \psi=0 \Rightarrow\left(\Gamma_{\mu} \partial_{\mu}+m\right) \psi^{\prime}=0, \tag{1.2}\\
{\left[Q, \Gamma_{\mu}\right]_{-}=0 .}
\end{gather*}
$$

Lagrangian (1.1) should be invariant under the transformation Q, this requirement provides us with the following restriction

$$
\begin{equation*}
Q^{+} \eta Q=\eta \text {. } \tag{1.3}
\end{equation*}
$$

We will impose one additional requirement on symmetry transformations. Such transformations should preserve the Majorana nature of the field. This means that if the function Ψ_{A} is real (imaginary) part of the complete wave function, then after symmetry transformation the function $\Psi_{A}^{\prime}=Q_{A B} \Psi_{B}$ remains real (imaginary). Henceforth, this requirement is called the Majorana condition. Now let us specify the massless case

$$
\begin{equation*}
\Gamma_{\mu} \partial_{\mu} \psi=0 . \tag{1.4}
\end{equation*}
$$

The requirement of invariance for that equation leads to two alternative restrictions

$$
\begin{gather*}
\Gamma_{\mu} \partial_{\mu} Q_{1} \psi=0 \Rightarrow\left[Q_{1}, \Gamma_{\mu}\right]_{-}=0 \\
-\Gamma_{\mu} \partial_{\mu} Q_{2} \psi=0 \Rightarrow\left[Q_{2}, \Gamma_{\mu}\right]_{+}=0 \tag{1.5}
\end{gather*}
$$

Additional requirement of Lagrangian invariance also leads to two possibilities. One is
$L^{\prime}=L,\left[Q_{1}, \Gamma_{\mu}\right]_{-}=0$; it reduces to yet known constraint (1.3), which arose in the massive case. The other possibility is as follows

$$
L^{\prime}=-L,\left[Q_{2}, \Gamma_{\mu}\right]_{+}=0
$$

whence we obtain $Q_{2}^{+} \eta \Gamma_{\mu} Q_{2}=-\eta \Gamma_{\mu}$. Keeping in mind the relation $\left[Q_{2}, \Gamma_{\mu}\right]_{+}=0$, we conclude that the last relation is equivalent to the known restriction (1.3). Thus, the Lagrangian invariance with respect to intrinsic symmetry transformation both for massive and massless cases assumes one and the same constraint (1.3).

For infinitesimal one-parametric intrinsic symmetry transformation $Q=1+\omega J$, relation (1.3) takes on the simple form

$$
\begin{equation*}
(\omega J)^{+} \eta=-\eta \omega J . \tag{1.6}
\end{equation*}
$$

2 One Dirac Field

Let us consider one Dirac equation for a particle with nonzero mass $\left(\gamma_{\mu} \partial_{\mu}+m\right) \psi=0$, where ψ transforms as a bispinor; we used the metric with imaginary unit, $x_{\mu}=(\vec{x}, i c t)$. Below we will apply Majorana representation to the Dirac matrices [22]:

$$
\begin{align*}
& \gamma_{1}=\sigma_{1} \otimes \sigma_{1}, \gamma_{2}=\sigma_{3} \otimes I_{2}, \tag{2.1}\\
& \gamma_{3}=\sigma_{1} \otimes \sigma_{3}, \gamma_{4}=\sigma_{1} \otimes \sigma_{2},
\end{align*}
$$

σ_{i} designate the Pauli matrices. Allowing for identities $\gamma_{i}^{*}=\gamma_{i}, \gamma_{4}^{*}=-\gamma_{4}, \partial_{i}^{*}=\partial_{i}, \partial_{4}^{*}=-\partial_{4}$, we get

$$
\begin{equation*}
\left(\gamma_{1} \partial_{1}+\gamma_{2} \partial_{2}+\gamma_{3} \partial_{3}+\gamma_{4} \partial_{4}+m\right) \psi^{*}=0 . \tag{2.2}
\end{equation*}
$$

Summing and subtracting two last equations, we obtain $\left(\Gamma_{\mu} \partial_{\mu}+m\right) \Psi=0$, where the 8-component wave function Ψ has the structure

$$
\begin{gather*}
\Psi=\left(\psi^{r}, \psi^{i}\right), \psi^{r}= \\
=\frac{1}{\sqrt{2}}\left(\psi+\psi^{*}\right), \psi^{i}=\frac{1}{\sqrt{2}}\left(\psi-\psi^{*}\right), \tag{2.3}
\end{gather*}
$$

the matrices Γ_{μ} are defined by the formula $\Gamma_{\mu}=I_{2} \otimes \gamma_{\mu}$. In this Majorana basis, the most general form of transformation Q (1.2) is

$$
Q=\left|\begin{array}{ll}
q_{11} & q_{12} \tag{2.4}\\
q_{21} & q_{22}
\end{array}\right| \otimes I_{4}=q \otimes I_{4}, \quad q_{m n} \in C
$$

8-dimensional symmetry transformations are decomposed into the linear combinations

$$
\begin{equation*}
Q=\omega_{0} I+\omega_{1} J_{1}+\omega_{2} J_{2}+\omega_{3} J_{3}, \tag{2.5}
\end{equation*}
$$

the matrices J_{k} satisfy the commutation relations for $s u(2)$:

$$
\begin{gather*}
J_{1}=\frac{\sigma_{1}}{2} \otimes I_{4}, J_{2}=\frac{i \sigma_{2}}{2} \otimes I_{4}, J_{3}=\frac{\sigma_{3}}{2} \otimes I_{4}, \tag{2.6}\\
{\left[J_{i}, J_{j}\right]_{-}=i \varepsilon_{i j k} J_{k} .}
\end{gather*}
$$

The above Majorana condition leads to the following restrictions on parameters: ω_{1} is imaginary, and ω_{2}, ω_{3} are real, below we will apply the
notations $\omega_{1}=i \Omega_{1}, \omega_{2}=\Omega_{2}, \omega_{3}=\Omega_{3}$. The determinant of the Q equals

$$
\begin{aligned}
& \operatorname{det} Q=\left(-1-\omega_{1}^{2}-\omega_{2}^{2}-\omega_{3}^{2}+\omega_{0}^{2}\right) \times \\
& \quad \times\left(1-\omega_{1}^{2}-\omega_{2}^{2}-\omega_{3}^{2}+\omega_{0}^{2}\right) \times \\
& \quad \times\left(-i-\omega_{1}^{2}-\omega_{2}^{2}-\omega_{3}^{2}+\omega_{0}^{2}\right) \times \\
& \quad \times\left(i-\omega_{1}^{2}-\omega_{2}^{2}-\omega_{3}^{2}+\omega_{0}^{2}\right)+1
\end{aligned}
$$

because the total multiplier at Q has no physical meaning, we set $\operatorname{det} Q=+1$, so obtaining

$$
\begin{aligned}
& \left(-1-\omega_{1}^{2}-\omega_{2}^{2}-\omega_{3}^{2}+\omega_{0}^{2}\right) \times \\
& \times\left(1-\omega_{1}^{2}-\omega_{2}^{2}-\omega_{3}^{2}+\omega_{0}^{2}\right) \times \\
& \times\left(-i-\omega_{1}^{2}-\omega_{2}^{2}-\omega_{3}^{2}+\omega_{0}^{2}\right) \times \\
& \times\left(i-\omega_{1}^{2}-\omega_{2}^{2}-\omega_{3}^{2}+\omega_{0}^{2}\right)=0
\end{aligned}
$$

whence we get two alternative possibilities

$$
\begin{gather*}
\Omega_{1}^{2}-\omega_{2}^{2}-\omega_{3}^{2}+\omega_{0}^{2}=1 \\
\Omega_{1}^{2}-\omega_{2}^{2}-\omega_{3}^{2}+\omega_{0}^{2}=-1 \tag{2.7}
\end{gather*}
$$

The existence of Lagrangian formulation (1.2) leads to additional restrictions: the symmetry transformation may include only one generator J_{1} :

$$
\begin{equation*}
Q=\omega_{0} I+i \Omega_{1} J_{1} \tag{2.8}
\end{equation*}
$$

correspondingly relations (2.7) take on the form

$$
\begin{equation*}
\Omega_{1}^{2}+\omega_{0}^{2}=1, \quad \Omega_{1}^{2}+\omega_{0}^{2}=-1 \tag{2.9}
\end{equation*}
$$

It is readily verified that the Majorana condition forbids the second variant in (2.9). The finite transformation has the structure

$$
\begin{gather*}
\psi^{r^{\prime}}=\omega_{0} \psi^{r}+i \Omega_{1} \psi^{i}, \psi^{i^{\prime}}=\omega_{0} \psi^{i}+i \Omega_{1} \psi^{r} \tag{2.10}\\
\Omega_{1}^{2}+\omega_{0}^{2}=1
\end{gather*}
$$

Real and imaginary parts get entangled by this transformation, however the spiting into real and imaginary parts is not destroyed. Transformations (2.10) make up the Abelian group $U(1)$.

In fact, this model can be easily reduced to the form when we may speak about two 8-dimensional Majorana fields, real and imaginary. Indeed, let it be $i \psi_{i}=\bar{\phi}_{r}, i \psi_{r}=\bar{\phi}_{i}$, then (2.9) are re-written as follows

$$
\psi_{r^{\prime}}=\omega_{0} \psi_{r}+\Omega_{1} \bar{\phi}_{r}, \quad \psi_{i}^{\prime}=\omega_{0} \psi_{i}+\Omega_{1} \bar{\phi}_{i} .
$$

3 The System of Two Dirac Fields

Let us consider the system of two Dirac fields

$$
\begin{equation*}
\left(\gamma_{\mu} \partial_{\mu}+m\right) \psi_{1}=0, \quad\left(\gamma_{\mu} \partial_{\mu}+m\right) \psi_{2}=0 \tag{3.1}
\end{equation*}
$$

where ψ_{1}, ψ_{2} stand for two bispinors, as in the above we apply the Dirac matrices to Majorana basis. Further we derive the standard matrix form of the 16-component equation

$$
\begin{gather*}
\left(\Gamma_{\mu} \partial_{\mu}+m\right) \Psi=0, \Psi=\left(\psi_{1}^{r}, \psi_{2}^{r} ; \psi_{1}^{i}, \psi_{2}^{i}\right) \tag{3.2}\\
\Gamma_{\mu}=I_{4} \otimes \gamma_{\mu}
\end{gather*}
$$

The most general form of the relevant symmetry transformations should have the structure $Q=q \otimes I_{4}$, where q is a certain 4×4 matrix. This
matrix can be decomposed into the complete set $I_{4}, \gamma_{5}=\gamma_{1} \gamma_{2} \gamma_{3} \gamma_{4}, \gamma_{\mu}, \gamma_{\mu} \gamma_{5}, \gamma_{\mu} \gamma_{v}$, where indices in $\gamma_{\mu} \gamma_{\nu}$ take the the values $\{23,31,12,14,24,34\}$. Therefore, the transformations Q may be presented with the help of 16 basic elements

$$
\begin{gather*}
I_{16}, J^{\mu}=\gamma_{\mu} \otimes I_{4}, J^{5}=\gamma_{5} \otimes I_{4} \\
J^{\mu 5}=i \gamma_{\mu} \gamma_{5} \otimes I_{4}, J^{\mu \nu}=i \gamma_{\mu} \gamma_{v} \otimes I_{4} \tag{3.3}
\end{gather*}
$$

expressions for $J^{\mu 5}$ and $J^{\mu \nu}$ are multiplied by imaginary unit in order to have corresponding generators Hermitian. Let us numerate the generators as follows

$$
\begin{gather*}
J^{\mu} \rightarrow J_{1} \ldots J_{4}, J^{5} \rightarrow J_{5}, \\
J^{\mu 5} \rightarrow J_{6} \ldots J_{9}, J^{\mu \mathrm{v}} \rightarrow J_{10} \ldots J_{15} . \tag{3.4}
\end{gather*}
$$

Applying the Majorana requirement to 1-parametric transformations

$$
\begin{equation*}
Q=1+\omega_{s} J_{s}, s=1, \ldots, 15,(\text { no summing in } s) \tag{3.5}
\end{equation*}
$$

we get additional restrictions on parameters:

$$
\begin{aligned}
& \text { - imaginary } \omega_{1}, \omega_{3}, \omega_{7}, \omega_{9}, \omega_{11}, \omega_{14} ; \\
& \text { - real } \omega_{2}, \omega_{4}, \omega_{5}, \omega_{6}, \omega_{8}, \omega_{10}, \omega_{12}, \omega_{13}, \omega_{15}
\end{aligned}
$$

From the Lagrangian invariance we get 15 restrictions on generators

$$
\left(\omega_{s} J_{s}\right)^{+} \eta=-\eta \omega_{s} J_{s}, s=1, \ldots, 15, \eta=I_{4} \otimes \gamma_{4} .
$$

The direct verification of equations (3.6) with the use of explicit expressions for generators shows that only 6 generators satisfy these constraints $J_{1}, J_{3}, J_{7}, J_{9}, J_{11}, J_{14}$. Thus, the Lagrangian is invariant only under 1-parametric transformations with generators

$$
\begin{gather*}
J_{1}=\gamma_{1} \otimes I_{4}, J_{3}=\gamma_{3} \otimes I_{4}, \\
J_{11}=i \gamma_{3} \gamma_{1} \otimes I_{4}, J_{7}=i \gamma_{2} \gamma_{5} \otimes I_{4}, \tag{3.7}\\
J_{9}=i \gamma_{4} \gamma_{5} \otimes I_{4}, J_{14}=i \gamma_{2} \gamma_{4} \otimes I_{4} .
\end{gather*}
$$

These generators lead to finite transformations with the structure

$$
\left|\begin{array}{cc}
R_{1} & i R_{2} \tag{3.8}\\
i R_{3} & R_{4}
\end{array}\right|\left|\begin{array}{c}
\Psi_{+} \\
i \Psi_{-}
\end{array}\right|,
$$

where $R_{1}, R_{2}, R_{3}, R_{4}$ are real 8×8 matrices, and Ψ_{+}, Ψ_{-}are real 8 -dimensional columns. These transformations entangle 8 real and 8 imaginary components, however the splitting into real and imaginary part is not destroyed. It is readily verified that two triples of generators

$$
\begin{align*}
& S_{1}=\frac{1}{2} J_{7}, S_{2}=\frac{1}{2} J_{9}, S_{3}=\frac{1}{2} J_{14} \\
& S_{1}^{\prime}=\frac{1}{2} J_{1}, S_{2}^{\prime}=\frac{1}{2} J_{3}, S_{3}^{\prime}=\frac{1}{2} J_{11} \tag{3.9}
\end{align*}
$$

obey the Lie algebra $\operatorname{su}(2):\left[S_{i}, S_{j}\right]_{-}=i S_{k} \varepsilon_{i j k}$ and $\left[S_{i}^{\prime}, S_{j}^{\prime}\right]_{-}=i S_{k}^{\prime} \varepsilon_{i j k}$. These two sets commute with each other, $\left[S_{i}, S_{j}^{\prime}\right]_{-}=0$. In other words, these transformations make up a 6-parametric group with the structure $S U(2) \otimes S U(2)$.

4 The System of Three Dirac Fields

Let us consider the system of three Dirac fields

$$
\begin{equation*}
\left(\gamma_{\mu} \partial_{\mu}+m\right) \psi_{i}=0, i=1,2,3, \tag{4.1}
\end{equation*}
$$

where $\psi_{1}, \psi_{2}, \psi_{3}$ are bispinors. We obtain the standard matrix form of the equation

$$
\begin{gather*}
\left(\Gamma_{\mu} \partial_{\mu}+m\right) \Psi=0, \Gamma_{\mu}=I_{6} \otimes \gamma_{\mu}, \tag{4.2}\\
\Psi=\left(\psi_{1}^{r}, \psi_{2}^{r}, \psi_{3}^{r}, \psi_{1}^{i}, \psi_{2}^{i}, \psi_{3}^{i}\right) .
\end{gather*}
$$

Intrinsic symmetry transformations Q are presented by complex 24×24 matrices, which commute with the matrices Γ_{μ}. In Majorana basis, the most general structure of the matrix Q is $Q=q \otimes I_{4}$, where q is a complex 6×6 matrix. This matrix q can be decomposed in the linear combination of the basic matrices

$$
\begin{equation*}
I_{6}, \quad \sigma_{i} \otimes I_{3}, \quad I_{2} \otimes \alpha_{A}, \quad \sigma_{i} \otimes \alpha_{A} ; \tag{4.3}
\end{equation*}
$$

where α_{A} stand for generators of the group $\operatorname{SU}(3)$, $A=1 \div 8$.

Let us take 8 Hermitian generators α_{A} for the group $\operatorname{SU}(3)$ as follows [23]:

$$
\begin{gather*}
\alpha_{1}=e^{11}-e^{33}, \alpha_{2}=e^{22}-e^{33}, \alpha_{3}=e^{23}+e^{32}, \\
\alpha_{4}=e^{13}+e^{31}, \alpha_{5}=e^{12}+e^{21}, \alpha_{6}=-i\left(e^{23}-e^{32}\right), \tag{4.4}\\
\alpha_{7}=-i\left(e^{31}-e^{13}\right), \alpha_{8}=-i\left(e^{12}-e^{21}\right),
\end{gather*}
$$

where $e_{i j}$ stand for the elements of the complete matrix algebra. Their explicit form is

$$
\begin{align*}
& \alpha_{1}=\left|\begin{array}{rrr}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right|, \alpha_{2}=\left|\begin{array}{rrr}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right|, \alpha_{3}=\left|\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right|, \\
& \alpha_{4}=\left|\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right|, \alpha_{5}=\left|\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right|, \quad(4.5) \tag{4.5}\\
& \alpha_{6}=\left|\begin{array}{lrr}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right|, \alpha_{7}=\left|\begin{array}{rrr}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right|, \alpha_{8}=\left|\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right| .
\end{align*}
$$

They relate to Okubo matrices [24] in the following way

$$
\begin{gather*}
a_{1}^{1}=\frac{1}{3}\left|\begin{array}{rrr}
2 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right|, a_{1}^{2}=\left|\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right|, a_{1}^{3}=\left|\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right|, \\
a_{2}^{1}=\left|\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right|, a_{2}^{2}=\frac{1}{3}\left|\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & -1
\end{array}\right|, \\
a_{2}^{3}=\left|\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right|, a_{3}^{1}=\left|\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right|, \tag{4.6}\\
a_{3}^{2}=\left|\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right|, a_{3}^{3}=\frac{1}{3}\left|\begin{array}{rrr}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 2
\end{array}\right| .
\end{gather*}
$$

We can easily derive the following relations between these two sets

$$
\begin{gathered}
\alpha_{1}=2 a_{1}^{1}+a_{2}^{2}, \quad \alpha_{2}=a_{1}^{1}+2 a_{2}^{2}, \alpha_{3}=a_{2}^{3}+a_{3}^{2}, \\
\alpha_{4}=a_{1}^{3}+a_{3}^{1}, \quad \alpha_{5}=a_{1}^{2}+a_{2}^{1}, \quad \alpha_{6}=-i\left(a_{2}^{3}-a_{3}^{2}\right), \\
\alpha_{7}=-i\left(a_{1}^{3}-a_{3}^{1}\right), \quad \alpha_{8}=-i\left(a_{1}^{2}-a_{2}^{1}\right) .
\end{gathered}
$$

In application of the group $S U(3)$, the GellMann matrices are commonly used [23], they are related to the above matrices α_{i} (4.4) by the formulas

$$
\begin{gather*}
\lambda_{1}=\frac{1}{2} \alpha_{5}, \lambda_{2}=\frac{1}{2} \alpha_{8}, \lambda_{3}=\frac{1}{2}\left(\alpha_{1}-\alpha_{2}\right), \\
\lambda_{4}=\frac{1}{2} \alpha_{4}, \lambda_{5}=\frac{1}{2} \alpha_{7}, \lambda_{6}=\frac{1}{2} \alpha_{3}, \tag{4.8}\\
\lambda_{7}=\frac{1}{2} \alpha_{6}, \lambda_{8}=\frac{1}{2 \sqrt{3}}\left(\alpha_{1}+\alpha_{2}\right) .
\end{gather*}
$$

Let us turn back to the study of the symmetries Q for a 24 -component field. The relevant transformations are determined by 35 Hermitian generators; it is convenient to numerate them

$$
\begin{gather*}
J_{1} \ldots J_{3} \rightarrow\left(\sigma_{i} \otimes I_{3}\right) \otimes I_{4}, \\
J_{4} \ldots J_{11} \rightarrow\left(I_{2} \otimes \alpha_{A}\right) \otimes I_{4}, \tag{4.9}\\
J_{12} \ldots J_{35} \rightarrow\left(\sigma_{i} \otimes \alpha_{A}\right) \otimes I_{4} .
\end{gather*}
$$

It should be noted that only generators J_{1}, J_{2}, J_{3} have quadratic minimal polynomial, the remaining 32 generators have the cubic minimal polynomial: $\quad 3 \rightarrow \lambda^{2}=1 ; 32 \rightarrow \lambda^{3}=\lambda$. Minimal polynomials for generators based on Gell-Mann 3×3 matrices have more complex structure:

$$
\begin{gather*}
J_{1}, J_{2}, J_{3} \rightarrow \lambda^{2}=1 ; J_{11} \rightarrow \lambda^{2}+\frac{\sqrt{3}}{3} \lambda=\frac{2}{3} ; \tag{4.10}\\
J_{19}, J_{27}, J_{35} \rightarrow \lambda^{4}-\frac{5}{3} \lambda^{2}=\frac{4}{9}
\end{gather*}
$$

for 28 remaining generators the minimal polynomials are cubic $\lambda^{3}=\lambda$. Below we will apply the generators (4.9).

The Majorana condition for 1-parametric transformations leads to the following constraints for 35 parameters ω :

- real

$$
\begin{gather*}
\omega_{2}, \omega_{3}, \omega_{4}, \omega_{6}, \omega_{7}, \omega_{9}, \\
\omega_{11}, \omega_{13}, \omega_{16}, \omega_{31}, \omega_{33}, \omega_{35} ; \tag{4.11}\\
\omega_{18}, \omega_{20}, \omega_{22}, \omega_{23}, \omega_{25}, \omega_{27}, \omega_{28}, \omega_{30}, \\
- \text { imaginary } \\
\omega_{1}, \omega_{5}, \omega_{8}, \omega_{10}, \omega_{12}, \omega_{14}, \omega_{15}, \omega_{17}, \tag{4.12}\\
\omega_{19}, \omega_{21}, \omega_{24}, \omega_{26}, \omega_{29}, \omega_{32}, \omega_{34} .
\end{gather*}
$$

The Lagrangian requirement (1.6) is satisfied only for imaginary parameters (4.12).

Thus, the intrinsic symmetry transformations are determined by the following 15 generators

$$
\begin{aligned}
& J_{1}=\left(\sigma_{1} \otimes I_{3}\right) \otimes I_{4}, \quad J_{9}=\left(I_{2} \otimes \alpha_{6}\right) \otimes I_{4}, \\
& J_{10}=\left(I_{2} \otimes \alpha_{7}\right) \otimes I_{4}, J_{11}=\left(I_{2} \otimes \alpha_{8}\right) \otimes I_{4}, \\
& J_{12}=\left(\sigma_{1} \otimes \alpha_{1}\right) \otimes I_{4}, J_{13}=\left(\sigma_{1} \otimes \alpha_{2}\right) \otimes I_{4},
\end{aligned}
$$

$$
\begin{gather*}
J_{14}=\left(\sigma_{1} \otimes \alpha_{3}\right) \otimes I_{4}, J_{15}=\left(\sigma_{1} \otimes \alpha_{4}\right) \otimes I_{4}, \tag{4.13}\\
J_{16}=\left(\sigma_{1} \otimes \alpha_{5}\right) \otimes I_{4}, J_{25}=\left(\sigma_{2} \otimes \alpha_{6}\right) \otimes I_{4}, \\
J_{26}=\left(\sigma_{2} \otimes \alpha_{7}\right) \otimes I_{4}, \quad J_{27}=\left(\sigma_{2} \otimes \alpha_{8}\right) \otimes I_{4}, \\
J_{33}=\left(\sigma_{3} \otimes \alpha_{6}\right) \otimes I_{4}, J_{34}=\left(\sigma_{3} \otimes \alpha_{7}\right) \otimes I_{4}, \\
J_{35}=\left(\sigma_{3} \otimes \alpha_{8}\right) \otimes I_{4} .
\end{gather*}
$$

Only the generator J_{1} has a quadratic minimal polynomial, the 14 remaining ones have a cubic minimal polynomial. The study of commutators for generators shows that there exist two triples of generators which make up subgroups isomorphic to $s u(2)$:

$$
\begin{align*}
& \frac{1}{2}\left(J_{9}, J_{13}, J_{14}\right)=\left(S_{1}, S_{2}, S_{3}\right) \\
& \frac{1}{2}\left(J_{10}, J_{12}, J_{15}\right)=\left(S_{1}^{\prime}, S_{2}^{\prime}, S_{3}^{\prime}\right) \tag{4.14}
\end{align*}
$$

All the generators in sets (4.14) have cubic minimal polynomial; besides, the generators from different triples commute with each other. Recall that these triples are realized on the matrices of dimension 24×24.

Let us write down the structure of the finite 1-parametric transformations relation to generators (4.13). The finite 1-parametric transformations for generators with minimal polynomial are

$$
\begin{equation*}
U=1+i \sin \alpha \lambda+(\cos \alpha-1) \lambda^{2} \tag{4.15}
\end{equation*}
$$

for the case of a quadratic polynomial we get

$$
U=\cos \alpha-i \sin \alpha \lambda
$$

Because all 15 one-parametric transformations are symmetries, we can conclude that all products of them will provide us with symmetries as well.

5 The System of 4 Dirac Fields

Let us consider the system of 4 Dirac fields

$$
\begin{equation*}
\left(\gamma_{\mu} \partial_{\mu}+m\right) \psi_{i}=0, \quad(i=1,2,3,4), \tag{5.1}
\end{equation*}
$$

whence we get the standard matrix equation

$$
\begin{gather*}
\left(\Gamma_{\mu} \partial_{\mu}+m\right) \Psi=0, \Gamma_{\mu}=I_{8} \otimes \gamma_{\mu} \\
\Psi=\left(\psi_{1}^{r}, \psi_{2}^{r}, \psi_{3}^{r}, \psi_{4}^{r}, \psi_{1}^{i}, \psi_{2}^{i} \psi_{3}^{i} \psi_{4}^{i}\right) . \tag{5.2}
\end{gather*}
$$

Transformations of intrinsic symmetry Q are determined by complex 32×32 matrices, they should commute with the matrices Γ_{μ}. In Majorana basis the most general form of Q is as follows $Q=q \otimes I_{4}$, where q stands for a complex 8×8 matrix. It can be decomposed in the complete set of basic 8×8 matrices:

$$
\begin{gather*}
I_{8}, \gamma_{\mu} \otimes I_{2}, \gamma_{5} \otimes I_{2}, \gamma_{\mu} \gamma_{5} \otimes I_{2}, \gamma_{\mu} \gamma_{v} \otimes I_{2}, \\
\gamma_{\mu} \otimes \sigma_{i}, \gamma_{5} \otimes \sigma_{i}, \gamma_{\mu} \gamma_{5} \otimes \sigma_{i}, \gamma_{\mu} \gamma_{v} \otimes \sigma_{i}, I_{4} \otimes \sigma_{i} . \tag{5.3}
\end{gather*}
$$

The symmetry transformations for a 32-component field are determined by 63 generators; let us list them as shown below

$$
\begin{gathered}
J_{\mu} \rightarrow J_{1} \ldots J_{4} \rightarrow\left(\gamma_{\mu} \otimes I_{2}\right) \otimes I_{4}, \\
J_{5} \rightarrow J_{5} \rightarrow\left(\gamma_{5} \otimes I_{2}\right) \otimes I_{4}, \\
J_{\mu 5} \rightarrow J_{6} \ldots J_{9} \rightarrow i\left(\gamma_{\mu} \gamma_{5} \otimes I_{2}\right) \otimes I_{4}, \\
J_{[\mu \nu]} \rightarrow J_{10} \ldots J_{15} \rightarrow i\left(\gamma_{\mu} \gamma_{\nu} \otimes I_{2}\right) \otimes I_{4},
\end{gathered}
$$

$$
\begin{align*}
& J_{\mu i} \rightarrow J_{16} \ldots J_{27} \\
& \rightarrow\left(\gamma_{\mu} \otimes \sigma_{i}\right) \otimes I_{4}, \tag{5.4}\\
& J_{5 i} \rightarrow J_{28} \ldots J_{30} \rightarrow\left(\gamma_{5} \otimes \sigma_{i}\right) \otimes I_{4}, \\
& J_{[\mu 5 i]} \rightarrow J_{31} \ldots J_{42} \rightarrow i\left(\gamma_{\mu} \gamma_{5} \otimes \sigma_{i}\right) \otimes I_{4}, \\
& J_{[\mu v] i} \rightarrow J_{43} \ldots J_{60} \rightarrow i\left(\gamma_{\mu} \gamma_{v} \otimes \sigma_{i}\right) \otimes I_{4}, \\
& J_{4 i} \rightarrow J_{61} \ldots J_{63} \rightarrow\left(I_{4} \otimes \sigma_{i}\right) \otimes I_{4} .
\end{align*}
$$

All generators are Hermitian, and have a quadratic minimal polynomial, $J_{. .}^{2}=I$. The Majorana condition for 1-parametric transformations leads to the constrains on 63 parameters ω :

$$
\begin{align*}
& - \text { real } 35 \\
& \quad \omega_{2}, \omega_{4}, \omega_{5}, \omega_{6}, \omega_{8}, \omega_{10}, \omega_{12}, \omega_{13}, \omega_{15}, \\
& \omega_{17}, \omega_{19}, \omega_{21}, \omega_{23}, \omega_{25}, \omega_{27}, \omega_{28}, \omega_{30}, \\
& \omega_{31}, \omega_{33}, \omega_{35}, \omega_{37}, \omega_{39}, \omega_{41}, \omega_{43}, \omega_{45}, \omega_{47}, \tag{5.5}\\
& \omega_{49}, \omega_{51}, \omega_{52}, \omega_{54}, \omega_{56}, \omega_{58}, \omega_{60}, \omega_{61}, \omega_{63} ; \\
& - \text { imaginary } 28 \\
& \omega_{1}, \omega_{3}, \omega_{7}, \omega_{9}, \omega_{11}, \omega_{14}, \omega_{16}, \omega_{18}, \omega_{20}, \tag{5.6}\\
& \omega_{22}, \omega_{24}, \omega_{26}, \omega_{29}, \omega_{32}, \omega_{34}, \omega_{36}, \omega_{38}, \\
& \omega_{40}, \omega_{42}, \omega_{44}, \omega_{46}, \omega_{48}, \omega_{50}, \omega_{53}, \omega_{55}, \omega_{57}, \omega_{59}, \omega_{62} .
\end{align*}
$$

The Lagrangian formulation (1.6) of the theory is possible only for 28 one-parametric transformations with imaginary ω (5.6). Thus, the intrinsic symmetry transformations are determined by the 28 generators

$$
\begin{gather*}
J_{1}=\left(\gamma_{1} \otimes I_{2}\right) \otimes I_{4}, J_{3}=\left(\gamma_{3} \otimes I_{2}\right) \otimes I_{4}, \\
J_{7}=i\left(\gamma_{2} \gamma_{5} \otimes I_{2}\right) \otimes I_{4}, J_{9}=i\left(\gamma_{4} \gamma_{5} \otimes I_{2}\right) \otimes I_{4}, \\
J_{11}=i\left(\gamma_{3} \gamma_{1} \otimes I_{2}\right) \otimes I_{4}, J_{14}=i\left(\gamma_{2} \gamma_{4} \otimes I_{2}\right) \otimes I_{4}, \\
J_{16}=\left(\gamma_{1} \otimes \sigma_{1}\right) \otimes I_{4}, J_{18}=\left(\gamma_{1} \otimes \sigma_{3}\right) \otimes I_{4}, \\
J_{20}=\left(\gamma_{2} \otimes \sigma_{2}\right) \otimes I_{4}, J_{22}=\left(\gamma_{3} \otimes \sigma_{1}\right) \otimes I_{4}, \tag{5.7}\\
J_{24}=\left(\gamma_{3} \otimes \sigma_{3}\right) \otimes I_{4}, J_{26}=\left(\gamma_{4} \otimes \sigma_{2}\right) \otimes I_{4}, \\
J_{29}=\left(\gamma_{5} \otimes \sigma_{2}\right) \otimes I_{4}, J_{32}=i\left(\gamma_{1} \gamma_{5} \otimes \sigma_{2}\right) \otimes I_{4}, \\
J_{34}=i\left(\gamma_{2} \gamma_{5} \otimes \sigma_{1}\right) \otimes I_{4}, J_{36}=i\left(\gamma_{2} \gamma_{5} \otimes \sigma_{3}\right) \otimes I_{4}, \\
J_{38}=i\left(\gamma_{3} \gamma_{5} \otimes \sigma_{2}\right) \otimes I_{4}, J_{40}=i\left(\gamma_{4} \gamma_{5} \otimes \sigma_{1}\right) \otimes I_{4}, \\
J_{42}=i\left(\gamma_{4} \gamma_{5} \otimes \sigma_{3}\right) \otimes I_{4}, J_{44}=i\left(\gamma_{2} \gamma_{3} \otimes \sigma_{2}\right) \otimes I_{4}, \\
J_{46}=i\left(\gamma_{3} \gamma_{1} \otimes \sigma_{1}\right) \otimes I_{4}, J_{48}=i\left(\gamma_{3} \gamma_{1} \otimes \sigma_{3}\right) \otimes I_{4}, \\
J_{50}=i\left(\gamma_{1} \gamma_{2} \otimes \sigma_{2}\right) \otimes I_{4}, J_{53}=i\left(\gamma_{1} \gamma_{4} \otimes \sigma_{2}\right) \otimes I_{4}, \\
J_{55}=i\left(\gamma_{2} \gamma_{4} \otimes \sigma_{1}\right) \otimes I_{4}, J_{57}=i\left(\gamma_{2} \gamma_{4} \otimes \sigma_{3}\right) \otimes I_{4}, \\
J_{59}=i\left(\gamma_{3} \gamma_{4} \otimes \sigma_{2}\right) \otimes I_{4}, J_{62}=\left(I_{4} \otimes \sigma_{2}\right) \otimes I_{4} .
\end{gather*}
$$

All the generators have dimension 32×32, and can be presented with the use of blocks of dimension 8×8. The study of the structure of these generators permits us to make the following conclusions.

1. Among the generators (5.6) one can separate 56 triples, each of them obeys the commutative relations of the Lie group $s u(2)$. For instance the triples, $\left(J_{7}, J_{70}, J_{29}\right),\left(J_{7}, J_{32}, J_{50}\right),\left(J_{70}, J_{40}, J_{55}\right)$ and so on.
2. For each of 56 triples there exist 10 other triples which commute with the generators from the first triple. For instance, the triple $\left(J_{16}, J_{36}, J_{59}\right)$ commutes with the following 10 concomitant triples

$$
\begin{gather*}
\left(J_{1}, J_{20}, J_{50}\right),\left(J_{1}, J_{24}, J_{48}\right),\left(J_{1}, J_{29}, J_{32}\right), \\
\left(J_{7}, J_{70}, J_{29}\right),\left(J_{7}, J_{32}, J_{50}\right), \\
\left(J_{70}, J_{40}, J_{55}\right),\left(J_{20}, J_{40}, J_{48}\right),\left(J_{24}, J_{32}, J_{55}\right), \\
\left(J_{24}, J_{40}, J_{50}\right),\left(J_{29}, J_{48}, J_{55}\right) . \tag{5.8}
\end{gather*}
$$

The generators from the basic triple do not enter concomitant 10 triples

$$
\begin{gather*}
{\left[J_{\text {basic }}, J_{\text {concomit }}^{A}\right]_{-}=0, A=1 \div 10 ;} \tag{5.9}\\
J_{\text {basic }} \cap J_{\text {concomit }}^{A}=0 .
\end{gather*}
$$

In other words, each triple generates 10 subgroups with the structure $s u(2) \otimes s u(2)$.

6 The System of One Massless Dirac Field

Let us consider one Dirac equation with zero mass $\gamma_{\mu} \partial_{\mu} \psi=0$, it may be presented in matrix form $\Gamma_{\mu} \partial_{\mu} \Psi=0$, where Ψ is an 8-component wave function (2.3). Because the field under consideration is massless, the intrinsic symmetry transformations may commute or anticommute with the basic matri$\operatorname{ces}\left[Q_{1}, \Gamma_{\mu}\right]_{-}=0,\left[Q_{2}, \Gamma_{\mu}\right]_{+}=0$. The first condition was analyzed in the above. So we are to study only the second condition. The structure of symmetries Q_{2} should be as follows $Q_{2}=q_{2} \otimes \gamma_{5}$, where q_{2} stands for an arbitrary complex matrix 2×2. Because the matrix q_{2} can be decomposed in the set of $I_{2}, \sigma_{1}, \sigma_{2}, \sigma_{3}$, the symmetries Q_{2} are determined by 4 elements (for massless cases, we will designate generators by symbol L):

$$
\begin{align*}
& L_{1}=\sigma_{1} \otimes \gamma_{5}, L_{2}=\sigma_{2} \otimes \gamma_{5}, \tag{6.1}\\
& L_{3}=\sigma_{3} \otimes \gamma_{5}, L_{0}=I_{2} \otimes \gamma_{5} .
\end{align*}
$$

The Majorana condition leads to the following restrictions on parameters of 1-parametric transformations $Q_{2}=1+\Omega L: \Omega_{1}$ is real, $\Omega_{2}, \Omega_{3}, \Omega_{0}$ are imaginary. The existence of the Lagrangian formulation (1.6) is possible only for one generator $L_{1}=\sigma_{1} \otimes \gamma_{5}$. Let us recall that the first symmetry transformation Q_{1} leads to the following result

$$
\begin{equation*}
J_{1}=\sigma_{1} \otimes I_{4}, \quad\left(\omega_{1} \text { is imaginary }\right) \tag{6.2}
\end{equation*}
$$

We can see that transformations corresponding to J_{1} and L_{1} are substantially different. Let us consider the finite transformations Q_{1} and Q_{2} :

$$
\begin{equation*}
Q_{1}=a_{0} I_{8}+i a_{1} J_{1}, Q_{2}=b_{0} I_{8}+b_{1} L_{1} \tag{6.3}
\end{equation*}
$$

a_{i}, b_{i} are real. For these symmetries, the Lagrangian condition $Q^{+} \eta Q=\eta$ leads to restrictions

$$
\begin{equation*}
a_{0}^{2}+a_{1}^{2}=1, b_{0}^{2}-b_{1}^{2}=1 \tag{6.4}
\end{equation*}
$$

Evidently, the product of Q_{1} and Q_{2} also is a symmetry transformation

$$
\begin{gather*}
Q=Q_{1} Q_{2}=Q_{2} Q_{1}= \\
=a_{0} b_{0} I_{8}+a_{0} b_{1} L_{1}+i b_{0} a_{1} J_{1}+i a_{1} b_{1} J_{1} L_{1}, \tag{6.5}
\end{gather*}
$$

where $J_{1} L_{1}=L_{1} J_{1}=I_{2} \otimes \gamma_{5}$. It is readily proved that the Lagrangian condition for the transformation (6.5)
leads to restriction

$$
\begin{equation*}
\left(a_{0}^{2}+a_{1}^{2}\right)\left(b_{0}^{2}-b_{1}^{2}\right)=1 \tag{6.6}
\end{equation*}
$$

Imposing the proper normalization, we rewrite the formulas (6.3) as follows

$$
\begin{align*}
& Q_{1}=\cos \alpha I_{8}+i \sin \alpha J_{1} \tag{6.7}\\
& Q_{2}=\cosh \beta I_{8}+\sinh \beta L_{1} .
\end{align*}
$$

7 The System of Two Massless Fields

Let us consider the system of two equations

$$
\begin{gather*}
\gamma_{\mu} \partial_{\mu} \psi_{1}=0, \gamma_{\mu} \partial_{\mu} \psi_{2}=0 \Rightarrow \Gamma_{\mu} \partial_{\mu} \Psi=0, \tag{7.1}\\
\Psi=\left(\psi_{1}^{r}, \psi_{2}^{r}, \psi_{1}^{i}, \psi_{2}^{i}\right)
\end{gather*}
$$

The intrinsic symmetry transformations obey the commutation or anticommutation relations $\left[Q_{1}, \Gamma_{\mu}\right]_{-}=0,\left[Q_{2}, \Gamma_{\mu}\right]_{+}=0$. The study of the commutation condition was performed in the above. Below we shall analyze the anticommutation condition. The structure of relevant matrix Q_{2} should be $Q_{2}=q \otimes \gamma_{5}$. The matrix $q_{4 \times 4}$ can be decomposed into the set of 16 matrices

$$
I_{4}, \gamma_{5}=\gamma_{1} \gamma_{2} \gamma_{3} \gamma_{4}, \gamma_{\mu}, \gamma_{\mu} \gamma_{5}, \gamma_{\mu} \gamma_{v} .
$$

Therefore the intrinsic symmetry transformations Q_{2} may be defined with the help of 15 generators

$$
\begin{gather*}
L^{\mu}=\gamma_{\mu} \otimes \gamma_{5}, L^{5}=\gamma_{5} \otimes \gamma_{5}, \\
L^{\mu 5}=i \gamma_{\mu} \gamma_{5} \otimes \gamma_{5}, L^{\mu v}=i \gamma_{\mu} \gamma_{v} \otimes \gamma_{5} . \tag{7.2}
\end{gather*}
$$

Let us numerate them as follows

$$
\begin{gather*}
L^{\mu} \rightarrow L_{1} \ldots L_{4}, L^{5} \rightarrow L_{5}, \tag{7.3}\\
L^{\mu 5} \rightarrow L_{6} \ldots L_{9}, L^{\mu \nu} \rightarrow L_{10} \ldots L_{15} .
\end{gather*}
$$

For 1-parametric transformations $Q_{2}=1+\Omega L$, obeying the Majorana condition, we find the following restrictions on parameters

$$
\begin{aligned}
& \text { - real } \Omega_{1}, \Omega_{3}, \Omega_{7}, \Omega_{9}, \Omega_{11}, \Omega_{14} \\
& \text { - imaginary } \\
& \quad \Omega_{2}, \Omega_{4}, \Omega_{5}, \Omega_{6}, \Omega_{8}, \Omega_{10}, \Omega_{12}, \Omega_{13}, \Omega_{15} .
\end{aligned}
$$

The study of Lagrangian condition (1.6) shows that the appropriate are the generators corresponding to real-valued parameters

$$
\begin{gather*}
L_{1}=\gamma_{1} \otimes \gamma_{5}, L_{3}=\gamma_{3} \otimes \gamma_{5}, L_{11}=i \gamma_{3} \gamma_{1} \otimes \gamma_{5}, \\
L_{7}=i \gamma_{2} \gamma_{5} \otimes \gamma_{5}, L_{9}=i \gamma_{4} \gamma_{5} \otimes \gamma_{5}, L_{14}=i \gamma_{2} \gamma_{4} \otimes \gamma_{5} . \tag{7.4}
\end{gather*}
$$

Let us study the Lagrangian condition for finite transformations Q_{2} (1.3):

$$
\begin{gathered}
Q_{2}^{+} \eta Q_{2}=\eta, \eta=I_{4} \otimes \gamma_{4} \\
Q_{2}=b_{0} I_{16}+b_{1} L_{1}+b_{2} L_{3}+b_{3} L_{7}+b_{4} L_{9}+b_{5} L_{11}+b_{6} L_{14}
\end{gathered}
$$

whence we find two solutions

1) $Q_{2}=b_{0} I_{16}+b_{1} L_{1}+b_{2} L_{3}+b_{5} L_{11}$, $b_{0}^{2}-b_{1}^{2}-b_{2}^{2}-b_{5}^{2}=1$;
2) $Q_{2}=b_{0} I_{16}+b_{3} L_{7}+b_{4} L_{9}+b_{6} L_{14}$, $b_{0}^{2}-b_{3}^{2}-b_{4}^{2}-b_{6}^{2}=1 ;$
all parameters b_{i} are real-valued, so in parametric space the signature is $(+,-,-,-)$.

Similarly, we consider the Lagrangian condition for finite transformations Q_{1} (1.3)

$$
\begin{gathered}
Q_{1}^{+} \eta Q_{1}=\eta, \eta=I_{4} \otimes \gamma_{4}, \\
Q_{1}=a_{0} I_{16}+i a_{1} J_{1}+i a_{2} J_{3}+ \\
+i a_{3} J_{7}+i a_{4} J_{9}+i a_{5} J_{11}+i a_{6} J_{14},
\end{gathered}
$$

whence we obtain two solutions

1) $Q_{1}=a_{0} I_{16}+i a_{1} J_{1}+i a_{2} J_{3}+i a_{5} J_{11}$,

$$
a_{0}^{2}+a_{1}^{2}+a_{2}^{2}+a_{5}^{2}=1
$$

2) $Q_{1}=a_{0} I_{16}+i a_{3} J_{7}+i a_{4} J_{9}+i a_{6} J_{14}$,
$a_{0}^{2}+a_{3}^{2}+a_{4}^{2}+a_{6}^{2}=1 ;$
all parameters a_{i} are real, in the parametric space we have the signature $(+,+,+,+)$. In relations (7.5) and (7.6) all the generators are Hermitian.

Let us change the notations for the generators

$$
\begin{align*}
& S_{1}=\frac{1}{2} J_{7}, S_{2}=\frac{1}{2} J_{9}, S_{3}=\frac{1}{2} J_{14}, \\
& S_{1}^{\prime}=\frac{1}{2} J_{1}, S_{2}^{\prime}=\frac{1}{2} J_{3}, S_{3}^{\prime}=\frac{1}{2} J_{11} \tag{7.7}\\
& s_{1}=\frac{1}{2} L_{7}, s_{2}=\frac{1}{2} L_{9}, s_{3}=\frac{1}{2} L_{14}, \\
& s_{1}^{\prime}=\frac{1}{2} L_{1}, s_{2}^{\prime}=\frac{1}{2} L_{3}, s_{3}^{\prime}=\frac{1}{2} L_{11} .
\end{align*}
$$

Then for symmetries Q_{1} we get more symmetrical formulas

$$
\text { 1) } \begin{align*}
& Q_{1}=a_{0} I_{16}+i a_{3} S_{1}+i a_{4} S_{2}+i a_{6} S_{3}, \\
& {\left[S_{i}, S_{j}\right]_{-}=-i S_{k} \varepsilon_{i j k},} \tag{7.8}
\end{align*}
$$

2) $Q_{1}=a_{0} I_{16}+i a_{1} S_{1}^{\prime}+i a_{2} S_{2}^{\prime}+i a_{5} S_{3}^{\prime}$,

$$
\left[S_{i}^{\prime}, S_{j}^{\prime}\right]_{-}=-i S_{k}^{\prime} \varepsilon_{i j k}
$$

in (7.8) we can see two commuting 3-parametric groups with the structure $\operatorname{su}(2),\left[S_{i}, S_{j}^{\prime}\right]_{-}=0$. For the case Q_{2} we have

1) $Q_{2}=b_{0} I_{16}+b_{3} s_{1}+b_{4} s_{2}+b_{6} s_{3}$,
2) $Q_{2}=b_{0} I_{16}+b_{1} s_{1}^{\prime}+b_{2} s_{2}^{\prime}+b_{5} s_{3}^{\prime}$.

We can see that all four triples of the generators from symmetries Q_{1} and Q_{2} are mixed in the following way:

$$
\begin{align*}
& {\left[s_{i}, s_{j}\right]_{-}=-i \varepsilon_{i j k} S_{k},\left[s_{i}^{\prime}, s_{j}^{\prime}\right]_{-}=-i \varepsilon_{i j k} S_{k}^{\prime},} \\
& {\left[S_{i}, s_{j}\right]_{-}=-i s_{k} \varepsilon_{i j k},\left[S_{i}^{\prime}, s_{j}^{\prime}\right]_{-}=-i s_{k}^{\prime} \varepsilon_{i j k} .} \tag{7.10}
\end{align*}
$$

Within the commutating relations (7.10) we can separate two 6-parametric subgroups:

- the first is

$$
\begin{gather*}
\left(a_{0} I_{16}+i a_{3} S_{1}+i a_{4} S_{2}+i a_{6} S_{3}\right)\left(b_{0} I_{16}+b_{3} s_{1}+b_{4} s_{2}+b_{6} s_{3}\right), \\
{\left[S_{i}, S_{j}\right]_{-}=-i S_{k} \varepsilon_{i j k},\left[s_{i}, s_{j}\right]_{-}=-i S_{k} \varepsilon_{i j k},} \tag{7.11}\\
{\left[S_{i}, s_{j}\right]_{-}=-i s_{k} \varepsilon_{i j k} ;}
\end{gather*}
$$

- the second is
$\left(a_{0} I_{16}+i a_{1} S_{1}^{\prime}+i a_{2} S_{2}^{\prime}+i a_{5} S_{3}^{\prime}\right)\left(b_{0} I_{16}+b_{1} s_{1}^{\prime}+b_{2} s_{2}^{\prime}+b_{5} s_{3}^{\prime}\right)$,

$$
\left[S_{i}^{\prime}, S_{j}^{\prime}\right]_{-}=-i S_{k}^{\prime} \varepsilon_{i j k},\left[s_{i}^{\prime}, s_{j}^{\prime}\right]_{-}=-i S_{k}^{\prime} \varepsilon_{i j k},
$$

$$
\begin{equation*}
\left[S_{i}^{\prime}, s_{j}^{\prime}\right]_{-}=-i s_{k}^{\prime} \varepsilon_{i j k} \tag{7.12}
\end{equation*}
$$

These groups are isomorphic to $S O(4)$ group (see in [25]). Thus, the complete symmetry group for 2 massless Dirac fields in Majorana approach is $\mathrm{SO}(4) \otimes \mathrm{SO}(4)$.

8 The System of Three Massless Fields

Let us consider the system of three Dirac fields

$$
\begin{gather*}
\gamma_{\mu} \partial_{\mu} \psi_{i}=0(i=1,2,3) \Rightarrow \Gamma_{\mu} \partial_{\mu} \Psi=0, \tag{8.1}\\
\Psi=\left(\psi_{1}^{r}, \psi_{2}^{r}, \psi_{3}^{r}, \psi_{1}^{i}, \psi_{2}^{i}, \psi_{3}^{i}\right) .
\end{gather*}
$$

For symmetry transformations, two alternative constraints may be imposed

$$
\begin{equation*}
\left[Q_{1}, \Gamma_{\mu}\right]_{-}=0, \quad \text { or } \quad\left[Q_{2}, \Gamma_{\mu}\right]_{+}=0 \tag{8.2}
\end{equation*}
$$

The first restriction was analyzed in the above. Here we shall examine the second condition. The general structure of the transformations Q_{2} may be as follows $Q_{2}=q \otimes \gamma_{5}$, where q is an arbitrary complex 6×6 matrix. Any such matrix may be decomposed into the complete set

$$
\begin{equation*}
I_{6}, \sigma_{i} \otimes I_{3}, \quad I_{2} \otimes \alpha_{A}, \sigma_{i} \otimes \alpha_{A}, \tag{8.3}
\end{equation*}
$$

where α_{A} stands for the generators of group $\operatorname{SU}(3)$ (see (4.4)), $A=1 \div 8$. Therefore, intrinsic symmetry transformations can be determined with the help of 36 basic elements

$$
\begin{gather*}
L_{i}=\left(\sigma_{i} \otimes I_{3}\right) \otimes \gamma_{5}, L_{A}=\left(I_{2} \otimes \alpha_{A}\right) \otimes \gamma_{5}, \\
L_{i A}=\left(\sigma_{i} \otimes \alpha_{A}\right) \otimes \gamma_{5} ; \tag{8.4}
\end{gather*}
$$

let us numerate them as follows

$$
\begin{equation*}
L_{i} \rightarrow L_{1} \ldots L_{3}, L_{A} \rightarrow L_{4} \ldots L_{11}, L_{i A} \rightarrow L_{12} \ldots L_{35} . \tag{8.5}
\end{equation*}
$$

Taking into account the Majorana condition, for 1-parametric transformations of the type $Q_{2}=1+\Omega L$, we find 21 and 15 restrictions on parameters Ω :

$$
\begin{align*}
& \text { - imaginary } \\
& \quad \Omega_{2}, \Omega_{3}, \Omega_{4}, \Omega_{5}, \Omega_{6}, \Omega_{7}, \Omega_{8}, \Omega_{17}, \\
& \quad \Omega_{18}, \Omega_{19}, \Omega_{20}, \Omega_{21}, \Omega_{22}, \Omega_{23}, \tag{8.6}\\
& \quad \Omega_{24}, \Omega_{28}, \Omega_{29}, \Omega_{30}, \Omega_{31}, \Omega_{32}, \Omega_{36} ; \\
& \text { - real } \\
& \quad \Omega_{1}, \Omega_{9}, \Omega_{10}, \Omega_{11}, \Omega_{12}, \Omega_{13}, \Omega_{14}, \Omega_{15}, \tag{8.7}\\
& \quad \Omega_{16}, \Omega_{25}, \Omega_{26}, \Omega_{27}, \Omega_{33}, \Omega_{34}, \Omega_{35} .
\end{align*}
$$

Only 15 generators referring to real-valued parameters satisfy the Lagrangian condition:

$$
\begin{gather*}
L_{1}=\left(\sigma_{i} \otimes I_{3}\right) \otimes \gamma_{5}, L_{9}=\left(I_{2} \otimes \alpha_{6}\right) \otimes \gamma_{5}, \\
L_{10}=\left(I_{2} \otimes \alpha_{7}\right) \otimes \gamma_{5}, L_{11}=\left(I_{2} \otimes \alpha_{8}\right) \otimes \gamma_{5}, \\
L_{12}=\left(\sigma_{1} \otimes \alpha_{1}\right) \otimes \gamma_{5}, L_{13}=\left(\sigma_{1} \otimes \alpha_{2}\right) \otimes \gamma_{5}, \\
L_{14}=\left(\sigma_{1} \otimes \alpha_{3}\right) \otimes \gamma_{5}, L_{15}=\left(\sigma_{1} \otimes \alpha_{4}\right) \otimes \gamma_{5}, \tag{8.8}\\
L_{16}=\left(\sigma_{1} \otimes \alpha_{5}\right) \otimes \gamma_{5}, L_{25}=\left(\sigma_{2} \otimes \alpha_{6}\right) \otimes \gamma_{5}, \\
L_{26}=\left(\sigma_{2} \otimes \alpha_{7}\right) \otimes \gamma_{5}, L_{27}=\left(\sigma_{2} \otimes \alpha_{8}\right) \otimes \gamma_{5}, \\
L_{33}=\left(\sigma_{3} \otimes \alpha_{6}\right) \otimes \gamma_{5}, L_{34}=\left(\sigma_{3} \otimes \alpha_{7}\right) \otimes \gamma_{5}, \\
L_{35}=\left(\sigma_{3} \otimes \alpha_{8}\right) \otimes \gamma_{5} ;
\end{gather*}
$$

referring to transformations $Q_{1} 15$ symmetry generators were given while considering the massive case (4.13).

Thus, for the case of three massless fields, we have found 30 -parametric group of intrinsic symmetry. By direct calculation, we can readily find generators all triples with $s u(2)$-structure in the set of 30×30. In particular, among 15 generators of the type Q_{1} there exist only two such triples

$$
\begin{equation*}
Q_{1} \quad\left(J_{9}, J_{13}, J_{14}\right),\left(J_{10}, J_{12}, J_{15}\right) ; \tag{8.9}
\end{equation*}
$$

among 15 generators of the type Q_{2} also exist only two such triples:

$$
\begin{equation*}
Q_{2} \quad\left(L_{9}, L_{13}, L_{14}\right),\left(L_{10}, L_{12}, L_{15}\right) . \tag{8.10}
\end{equation*}
$$

9 The System of Four Massless Fields

Let us consider the system of four Dirac fields

$$
\begin{gather*}
\gamma_{\mu} \partial_{\mu} \psi_{i}=0(i=1,2,3,4) \Rightarrow \Gamma_{\mu} \partial_{\mu} \Psi=0, \tag{9.1}\\
\Psi=\left(\psi_{1}^{r}, \psi_{2}^{r}, \psi_{3}^{r}, \psi_{4}^{r} ; \psi_{1}^{i}, \psi_{2}^{i}, \psi_{3}^{i}, \psi_{4}^{i}\right) .
\end{gather*}
$$

Intrinsic symmetry transformations should satisfy relations $\left[Q_{1}, \Gamma_{\mu}\right]_{-}=0$ or $\left[Q_{2}, \Gamma_{\mu}\right]_{+}=0$.

Because the first condition was studied when considering the massive case, we will examine only the symmetries of type Q_{2}. Their general structure may be of the form $Q_{2}=q \otimes \gamma_{5}$ where q is an 8×8 complex matrix. Any matrix $q_{8 \times 8}$ may be decomposed in the set of 64 elements

$$
\begin{gather*}
I_{8}, \gamma_{\mu} \otimes I_{2}, \gamma_{5} \otimes I_{2}, \gamma_{\mu} \gamma_{5} \otimes I_{2}, \gamma_{\mu} \gamma_{v} \otimes I_{2}, \\
\gamma_{\mu} \otimes \sigma_{i}, \gamma_{5} \otimes \sigma_{i}, \gamma_{\mu} \gamma_{5} \otimes \sigma_{i}, \gamma_{\mu} \gamma_{v} \otimes \sigma_{i}, I_{4} \otimes \sigma_{i} . \tag{9.2}
\end{gather*}
$$

The symmetries for this field are determined by 63 generators; they may be listed as follows

$$
\begin{align*}
& L_{\mu} \rightarrow L_{1} \ldots L_{4} \rightarrow\left(\gamma_{\mu} \otimes I_{2}\right) \otimes \gamma_{5}, \\
& L_{5} \rightarrow L_{5} \rightarrow\left(\gamma_{5} \otimes I_{2}\right) \otimes \gamma_{5}, \\
& L_{\mu 5} \rightarrow L_{6} \ldots L_{9} \rightarrow i\left(\gamma_{\mu} \gamma_{5} \otimes I_{2}\right) \otimes \gamma_{5}, \\
& L_{[\mu \nu]} \rightarrow L_{10} \ldots L_{15} \rightarrow i\left(\gamma_{\mu} \gamma_{v} \otimes I_{2}\right) \otimes \gamma_{5}, \\
& L_{\mu i} \rightarrow L_{16} \ldots L_{27} \rightarrow\left(\gamma_{\mu} \otimes \sigma_{i}\right) \otimes \gamma_{5}, \\
& L_{5 i} \rightarrow L_{28} \ldots L_{30} \rightarrow\left(\gamma_{5} \otimes \sigma_{i}\right) \otimes \gamma_{5}, \tag{9.3}\\
& L_{[\mu 5 i]} \rightarrow L_{31} \ldots L_{42} \rightarrow i\left(\gamma_{\mu} \gamma_{5} \otimes \sigma_{i}\right) \otimes \gamma_{5}, \\
& L_{[\mu v] i} \rightarrow L_{43} \ldots L_{60} \rightarrow i\left(\gamma_{\mu} \gamma_{v} \otimes \sigma_{i}\right) \otimes \gamma_{5}, \\
& L_{4 i} \rightarrow L_{61} \ldots L_{63} \rightarrow\left(I_{4} \otimes \sigma_{i}\right) \otimes \gamma_{5},
\end{align*}
$$

where $i=1 \div 3, \mu, \nu=1 \div 4,[\mu \nu]=23,31,12,14,24,34$. All generators have the quadratic minimal equation, $L^{2}=I$. The Majorana condition for 1-parametric transformations leads to restrictions on parameters Ω :

28 real parameters

$$
\begin{aligned}
& \Omega_{1}, \Omega_{3}, \Omega_{7}, \Omega_{9}, \Omega_{11}, \Omega_{14}, \Omega_{16}, \Omega_{18}, \Omega_{20}, \Omega_{22}, \\
& \Omega_{24}, \Omega_{26}, \Omega_{29}, \Omega_{32}, \Omega_{34}, \Omega_{36}, \Omega_{38}, \Omega_{40}, \Omega_{42}, \\
& \Omega_{44}, \Omega_{46}, \Omega_{48}, \Omega_{50}, \Omega_{53}, \Omega_{55}, \Omega_{57}, \Omega_{59}, \Omega_{62} ; \\
& \quad 35 \text { imaginary parameters } \\
& \Omega_{2}, \Omega_{4}, \Omega_{5}, \Omega_{6}, \Omega_{8}, \Omega_{10}, \Omega_{12}, \Omega_{13}, \Omega_{15}, \Omega_{17}, \Omega_{19}, \\
& \Omega_{21}, \Omega_{23}, \Omega_{25}, \Omega_{27}, \Omega_{28}, \Omega_{30}, \Omega_{31}, \Omega_{28}, \Omega_{30}, \\
& \Omega_{31}, \Omega_{33}, \Omega_{35}, \Omega_{37}, \Omega_{39}, \Omega_{41}, \Omega_{43}, \Omega_{45}, \Omega_{47},(9.5) \\
& \Omega_{49}, \Omega_{51}, \Omega_{52}, \Omega_{54}, \Omega_{56}, \Omega_{58}, \Omega_{60}, \Omega_{61}, \Omega_{63} .
\end{aligned}
$$

The Lagrangian condition (1.6) is satisfied only for 28 one-parametric transformations with real-valued Ω (9.4). Thus, the appropriate symmetries of the type Q_{2} are determined by the following 28 generators:

$$
\begin{gather*}
L_{1}=\left(\gamma_{1} \otimes I_{2}\right) \otimes \gamma_{5}, L_{3}=\left(\gamma_{3} \otimes I_{2}\right) \otimes \gamma_{5}, \\
L_{7}=i\left(\gamma_{2} \gamma_{5} \otimes I_{2}\right) \otimes \gamma_{5}, L_{9}=i\left(\gamma_{4} \gamma_{5} \otimes I_{2}\right) \otimes \gamma_{5}, \\
L_{11}=i\left(\gamma_{3} \gamma_{1} \otimes I_{2}\right) \otimes \gamma_{5}, L_{14}=i\left(\gamma_{2} \gamma_{4} \otimes I_{2}\right) \otimes \gamma_{5}, \\
L_{16}=\left(\gamma_{1} \otimes \sigma_{1}\right) \otimes \gamma_{5}, L_{18}=\left(\gamma_{1} \otimes \sigma_{3}\right) \otimes \gamma_{5}, \\
L_{20}=\left(\gamma_{2} \otimes \sigma_{2}\right) \otimes \gamma_{5}, L_{22}=\left(\gamma_{3} \otimes \sigma_{1}\right) \otimes \gamma_{5}, \tag{9.6}\\
L_{24}=\left(\gamma_{3} \otimes \sigma_{3}\right) \otimes \gamma_{5}, L_{26}=\left(\gamma_{4} \otimes \sigma_{2}\right) \otimes \gamma_{5}, \\
L_{29}=\left(\gamma_{5} \otimes \sigma_{2}\right) \otimes \gamma_{5}, L_{32}=i\left(\gamma_{1} \gamma_{5} \otimes \sigma_{2}\right) \otimes \gamma_{5}, \\
L_{34}=i\left(\gamma_{2} \gamma_{5} \otimes \sigma_{1}\right) \otimes \gamma_{5}, L_{36}=i\left(\gamma_{2} \gamma_{5} \otimes \sigma_{3}\right) \otimes \gamma_{5}, \\
L_{38}=i\left(\gamma_{3} \gamma_{5} \otimes \sigma_{2}\right) \otimes \gamma_{5}, L_{40}=i\left(\gamma_{4} \gamma_{5} \otimes \sigma_{1}\right) \otimes \gamma_{5}, \\
L_{42}=i\left(\gamma_{4} \gamma_{5} \otimes \sigma_{3}\right) \otimes \gamma_{5}, L_{44}=i\left(\gamma_{2} \gamma_{3} \otimes \sigma_{2}\right) \otimes \gamma_{5}, \\
L_{46}=i\left(\gamma_{3} \gamma_{1} \otimes \sigma_{1}\right) \otimes \gamma_{5}, L_{48}=i\left(\gamma_{3} \gamma_{1} \otimes \sigma_{3}\right) \otimes \gamma_{5}, \\
L_{50}=i\left(\gamma_{1} \gamma_{2} \otimes \sigma_{2}\right) \otimes \gamma_{5}, L_{53}=i\left(\gamma_{1} \gamma_{4} \otimes \sigma_{2}\right) \otimes \gamma_{5}, \\
L_{55}=i\left(\gamma_{2} \gamma_{4} \otimes \sigma_{1}\right) \otimes \gamma_{5}, L_{57}=i\left(\gamma_{2} \gamma_{4} \otimes \sigma_{3}\right) \otimes \gamma_{5}, \\
L_{59}=i\left(\gamma_{3} \gamma_{4} \otimes \sigma_{2}\right) \otimes \gamma_{5}, L_{62}=\left(I_{4} \otimes \sigma_{2}\right) \otimes \gamma_{5} .
\end{gather*}
$$

Their explicit form is omitted because of their bulkiness. All the generators have the dimension 32×32, they may be presented shorter with the use of blocks of dimension 8×8. Collecting together the generators of type Q_{2} (9.6) and generators of type Q_{1} (5.7), we get the complete symmetry group for the system of 4 massless fields.

The detailed study of the structure of these generators leads to the following conclusions.

1. Among all the generators of types Q_{1} and Q_{2} (see (5.6) and (9.6)) one can find 56 pairs of triples; in each pair the 6 involved operators obey the commutation rules for algebra so(4). For instance, two examples are

$$
\left(J_{1}, J_{3}, J_{11}\right) \in Q_{1},\left(L_{1}, L_{3}, L_{11}\right) \in Q_{2},
$$

and

$$
\left(J_{7}, J_{9}, J_{14}\right) \in Q_{1},\left(L_{7}, L_{9}, L_{14}\right) \in Q_{2} .
$$

The complete list of pairs of triples has been found. It should be noted that each triple of the type Q_{1} obeys the $s u(2)$ algebra.
2. For each 6 -element set there exist 10 other sets (each of 6 elements) that commute with the initial set. For instance, the basic set $\left(J_{1}, J_{3}, J_{11}, L_{1}, L_{3}, L_{11}\right)$ commutes with the following ones (each with the so(4) structure):

$$
\begin{aligned}
& \quad\left(J_{7}, J_{9}, J_{14}, L_{7}, L_{9}, L_{14}\right),\left(J_{7}, J_{40}, J_{55}, L_{7}, L_{40}, L_{55}\right), \\
& \left.\left(J_{7}, J_{42}, J_{57}, L_{7}, L_{42}, L_{57}\right),\left(J_{9}, J_{34}, J_{55}\right), L_{9}, L_{34}, L_{55}\right), \\
& \left(J_{9}, J_{36}, J_{57}, L_{9}, L_{36}, L_{57}\right),\left(J_{14}, J_{34}, J_{40}, L_{14}, L_{34}, L_{40}\right), \\
& \left(J_{14}, J_{36}, J_{42}, L_{14}, L_{36}, L_{42}\right),\left(J_{34}, J_{36}, J_{63}, L_{34}, L_{36}, L_{63}\right), \\
& \left(J_{40}, J_{42}, J_{62}, L_{40}, L_{42}, L_{62}\right),\left(J_{35}, J_{57}, J_{62}, L_{35}, L_{57}, L_{62}\right) .
\end{aligned}
$$

The generators from the basic set do not enter the 10 concomitants sets:

$$
\begin{gathered}
{\left[J_{\text {basic }}, J_{\text {concomit }}^{A}\right]_{-}=0, J_{\text {basic }} \cap J_{\text {concomit }}^{A}=0,} \\
{\left[L_{\text {basic }}, L_{\text {concomit }}^{A}\right]_{-}=0, L_{\text {basic }} \cap L_{\text {concomit }}^{A}=0, A=1 \div 10 .}
\end{gathered}
$$

In other words, each basic 6-element set gives rise to the algebra with structure $s o(4) \otimes s o(4)$.

Conclusion

In the separate paper, we presented the results of the analysis of internal symmetries for quantized Dirac fields, massive and massless ones; also we studied the internal symmetries in presents of electromagnetic and gravitation fields.

The authors are grateful to Professor V.A. Pletyuchov for the assistance provided.

REFERENCES

1. Dirac, P.A.M. Relativistic wave equations / P.A.M. Dirac // Proc. Roy. Soc. - 1936. - Vol. A155. P. 447-459.
2. Fierz, M. On relativistic wave equations for particles of arbitrary spin in an electromagnetic field / M. Fierz, W. Pauli // Proc. Roy. Soc. - 1939. Vol. A173. - P. 211-232.
3. Fierz, M. Über die relativistische theorie kräftefreier teilchen mit beliebigem spin / M. Fierz // Helv. Phys. Acta. - 1939. - Vol. 12, № 1. - P. 3-37.
4. Bhabha, H.J. Relativistic wave equations for the elementary particles / H.J. Bhabha // Rev. Mod. Phys. - 1945. - Vol. 17. - P. 200-216.
5. Harish-Chandra. Relativistic equations for elementary particles / Harish-Chandra // Proc. Roy. Soc. - 1948. - Vol. A192. - P. 195-218.
6. Gel'fand, I.M. General relativistic equations and infinite-dimensional representations of the Lorentz group / I.M. Gel'fand, A.Ya. Yaglom // JETP. 1948. - Vol. 18, № 8. - P. 703-733.
7. Fedorov, F.I. Projective operators in the theory of elementary particles / F.I. Fedorov // JETP. 1958. - Vol. 35. - P. 495-498.
8. Fedorov, F.I. On transformation of 4-dimensional vectors / F.I. Fedorov, A.A. Bogush // Doklady AN BSSR. - 1962. - Vol. 6, № 11. - P. 690-693.
9. Shelepin, L.A. Covariant theory of relativistic weave equations for particles with arbitrary spin / L.A. Shelepin // FIAN Proceedings, USSR. - 1964. Vol. 30. - P. 253-321.
10. Fuschich, V.I. On new and old symmetries of the Maxwell and Dirac equations / V.I. Fuschich, A.G. Nikitin // Physics of Elementary Particles and Atomic Nuclei. - 1983. - Vol. 14, № 1. - P. 5-57.
11. Fuschich, V.I. On a new method of studying the group properties of equations of mathematical physics / V.I. Fuschich // DAN USSR. - 1979. Vol. 246, № 4. - P. 846-850.
12. Darwin, C.G. The electron as a vector wave / C.G. Darwin // Proc. Roy. Soc. - 1927. - A116. P. 227-253.
13. Kähler, E. Der innere Differentialkul / E. Kähler // Rendiconti di math. (Roma). - 1962. Ser. 5. - Vol. 21, № 3, 4. - P. 425-523.
14. Strazhev, V.I. The Dirac - Kähler equation. Classical field / V.I. Strazhev, I.A. Satikov, D.A. Tsionenko. - Minsk: BSU, 2007. - 195 p.
15. Strazhev, V.I. On dial symmetry for vector field of general type / V.I. Strazhev // Acta Physica Polonica. - 1978. - Vol. B9, № 5. - P. 449-458.
16. Bogush, A.A. On the group of the intrinsic symmetry for 16 -component theory of vector particles / A.A. Bogush, S.I. Kruglov, V.I. Strazhev // Doclady AN BSSR. - 1978. - Vol. 22, № 10. P. 893-895.
17. Strazhev, V.I. Dial symmetry of relativistic wave equations / V.I. Strazhev, V.A. Pletyuchov // Acta Physica Polonica. - 1981. - Vol. B12, № 7. P. 651-664.
18. Strazhev, B.I. On Dirac like relativistic wave equations / V.I. Strazhev, V.A. Pletyuchov // Russian Physics Journal. - 1983. - № 12. - P. 38-41.
19. Satikov, I.A. On quantum description of the Dirac - Kähler field / I.A. Satikov, V.I. Strazhev // Theoretical and Mathematical Physics. - 1987. Vol. 73, № 1. - P. 16-25.
20. Pauli, W. On the conservation of the lepton charge / W. Pauli // Nuovo Cimento. - 1957. - Vol. 6. P. 204-214.
21. Gürsey, F. Connection of charge independence and barion number conservation with the Pauli transformation / F. Gürsey // Nuovo Cimento. 1957. - Vol. 8. - P. 411-415.
22. Davydov, A.S. Quantum mechanics / A.S. Davydov. - Moscow: Science, 1973. - 704 p.
23. Bogush, A.A. Introduction to field theory to gauge field theory of electroweak interactioins / A.A. Bogush. - Minsk: Science and Tehcnics, 1987. 359 p.
24. Rumer, Yu.B. The theory of unitary symmetry / Yu.B. Rumer, A.I, Fet. - Moscow: Science, 1970. - 405 p.
25. Red'kov V.V. Fields of particles in Riemannian space-time and the Lorentz group / V.M. Red'kov. - Minsk: Belarus Science, 2009. - 400 p.

Поступила в редакйию 22.12.2023.

Информация об авторах

Андрусевич Павел Петрович - преподаватель Редьков Виктор Михайлович - д.ф.-м.н., профессор

