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AHHOTanus. J{71s1 TpeXTEeMIOBBIX JIMHEHHBIX CTAIHOHAPHBIX CHHTYJIIPHO BO3MYILIEHHBIX CHCTEM C 3ama3JbIBaHHEM IO COCTOS-
HHIO Pa3BUBACTCSI METOJ pa3/elIeHNs IBIKCHUH Ha OCHOBE HEBBIPOXKIECHHOTO IIpeobdpa3oBaHus Tuia Yanr. BBeneHs! acumnro-
TUYECKHEe MPUOIIIKEHNS AU TIOJHOCTBIO Pa3/ielIeHHBIX ITOJCUCTEM PacCMaTPHBAEMOM CHCTEMBI C TPEXBPEMEHHBIMH MacIlTa-
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Abstract. For time-invariant singularly perturbed control systems with state delay the method of separation of movements is
evolved on the basis of Chang-type non-degenerate transformation. Asymptotic approximations for completely separated
subsystems of the considered singularly perturbed system with three-time scales are introduced, boundaries of values of small
singularity parameters are constructed and proved, which guarantee the validity of asymptotic representations and estimates of
solutions underlying matrix operator equations, asymptotic approximations for the decoupling transformation and matrix
operators of the split system. An illustrative example is given.
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Introduction

Singularly Perturbed Systems (SPS) are a com-
mon occurrence specially in contemporary applica-
tion in engineering, quantum mechanics, optimal
control, etc. [1]-[3]. High dimensionality and rigid-
ity of such systems due to the precedence of small
parameters which can be sourced by a wide range of
physical parameters such as friction factors, viscos-
ity and other system parameters, have made analysis
of solving such systems harder even in modern
mathematics.

Time scale separation of the Singularly Pertur-
bed Systems is a widely studied area due to the pos-
sibility of reducing the dimension of the simulated
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systems for the purpose of analysing and synthesiz-
ing systems. Time scale separation of a linear singu-
larly-perturbed continuous-time varying systems
without delay has been introduced with Chang’s
transformation [4]-[6] with a nondegenerate change
of variables. Generalization of the Change-type
transformation on a two-time scale singular per-
turbed time-invariant system without delay has been
done in [7]-[9] with two step change of variables.
There have been several studies in the area on the
generalization of Chang’s transformation to two,
three and multi-time scale Singularly Perturbed sys-
tems in slitting the subsystems depending on the
space of the variables which leads to lower
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dimensional systems which are lesser in complexity
in solving. Further, studies related to Singular Per-
turbed Systems with delays have been conducted in
[10], [11] where Chang type transformation has been
generalized to obtained the subsystems with delays.

Methods of solving Singularly Perturbed Sys-
tems is one of the widely researched areas in
mathematics and many approaches of solving
Singularly Perturbed Systems have been introduced
by mathematicians. Majorly those approaches are
based either on classical numerical approaches or on
asymptotic methods, and hybrid approaches have
also been considered. As far as the numerical meth-
ods of solving Singularly Perturbed Systems are
concerned, only the quantitative information of con-
sidered problems can be obtained, while some ex-
plicit information of the quantitative behaviour of
the family of the problem can be acquired with the
application of asymptotic methods [12]. In complex
SPSs, it is difficult to develop efficient numerical
methods for SPS due to the rigidity of such systems.
When the asymptotic methods are considered, the
main term of the asymptotic approximations con-
tains necessarily the essentials for the indication of
the qualitative behaviour of the solution and in some
cases is capable of replacing the exact solution to the
problem. Thus, the development of asymptotic
methods contributes to the development of accurate
numerical methods, as the knowledge of the struc-
ture of the solution helps in the development of nu-
merical methods for solving complex problems. The
simulation results of the study [13] indicate that the
asymptotic method is effective in the approximation
of sub-systems of SPS without compromising the
qualitative behaviours of the solutions. So, it is im-
portant to construct a splitting transformation and its
asymptotic approximation as a method for decom-
posing complex systems, a way to eliminate the ri-
gidity of such systems when developing effective
numerical methods.

The study [10] generalized the transformation
introduced by Chang in [4], to a linear time invariant
system with delay in the slow state variables where
the transformation has been constructed in the form
of an asymptotic series. In [11] a two-time scale SPS
with multiple commensurate delays in the slow state
variables is considered and Chang’s transformation
has been applied. An SPS is decomposed into its fast
and slow subsystems and matrix-valued operators
are approximated with respect to the small parameter
in an asymptotic series form. In a later study [12] for
a similar SPS, schema of the Chang’s transformation
of [4] is applied and existence/continuity of asymp-
totic approximations to the solutions of matrix-
valued operator of the transformation is proved and
discussed.

In a similar study [14], [15] decomposition and
asymptotic approximation of the three-time-scale
singularly perturbed systems with multiple commen-
surate delays in the slow state variables has been
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discussed. But there are few studies carried out con-
sidering the measure of reliability of the asymptotic
approximations for the SPS and, specially no studies
have been conducted for three-time-scale SPSs with
delay.

However, extension of the splitting transforma-
tion proposed by Chang to systems with delay is
generally impossible. This is related to the existence
and properties of fast and slow manifolds for such
systems [15]. Extending the splitting transformation
to systems with delay in the case when this is possi-
ble requires, in particular, substantiating the asymp-
totic representation of solutions of matrix operator
equations that depend on small parameters and ob-
taining corresponding estimates for small parame-
ters. For three-scale systems with delay, this prob-
lem is solved for the first time.

So, this work extends the results in [14], [15]
by deriving of a measure of the reliability (validity)
of the asymptotic approximation of the decoupled
due to the splitting transformation of the considered
TSPLTISD.

The study [14] focuses on the construction and
substantiation of a nondegenerate transformation,
which splits a three time-scale linear time-invariant
singularly perturbed system with perturbation pa-
rameters of two different orders of magnitude (small
parameters of two different orders at the highest
derivatives of a part of the variables) and with a de-
lay in slow state variables into three regularly de-
pendent on small parameters independent subsys-
tems of smaller dimensions than the original ones:
relatively fast, fastest and slow variables and the
matrix operator equations are obtained, which must
be satisfied by the elements of a non-degenerate
transformation, so that as a result of its application,
unrelated subsystems of different rates are obtained.

As the continuation of the study [14], in [15], it
is discussed that the decoupling transformation
formed in the study [14] can be constructed with any
degree of accuracy in the form of an asymptotic ex-
pansion in powers of small parameters. For this, the
proof of the solvability of the previously obtained
matrix operator equations is discussed. Further it is
discussed that decomposed subsystems can be repre-
sented in the form of asymptotic expansions in pow-
ers of small parameters, and iterative schemes can be
determined for finding the terms of the asymptotic
series. Extensive elaboration of the proof of the
theorems related to [15] shall be published in the
forthcoming publications of the authors.

The interest of this study is the construction of
the boundaries with a small parameter with respect
to the reliability / validity of asymptotic approxima-
tions of three time scale singularly perturbed system
with multiple commensurate delays in the slow state
variables. Generalization of Chang’s type transfor-
mation for a Three Time Scale Singularly Perturbed
System with multiple commensurate delays in the
slow state variable has been discussed by the
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previous research works by the authors and the
construction of iterative schemas for the asymptotic
approximation for the decoupled sub-systems
depending on the tempo of the variables has also
been carried out in the previous works [14], [15].

In this paper, with the use of a contraction
mapping principle and the fixed point theorem the
upper bounds on small singularity parameters gua-
rantying the validity of asymptotic approxi-mations
for the decoupling transformation and matrix opera-
tors of the decoupled system are proven.

1 Statement of the problem

A three-time-scale singularly perturbed linear
time-invariant control system with multiple com-
mensurate delays in the slow state variables
(TSPLTISD) is considered as defined here:

!
x(t) =D A x (= jh)+ A,y (1) +
j=0
+ 4, z(t)+Bu(t) xeR" ueR",
1
( ZAZUx(t jh +A22y( )+
Jj=0

+A232( )+ Byu(t),yeR",

e,2(t)= ,Z:;' 31;% x(t=jh)+ A, p(1)+

+A33z(t)+B3u(t), zeR™, 120,
with initial conditions
x(0)=x,, (0)=y,,2(0) =z,
x(0)=0(0), 6 [-A,0).
Here 4,.,4,,4 B,z—13 Jj= ﬁ are con-

ilj> 522 “53°

(1.1)

(1.2)

stant matrices with appropriate dimensions,
h=const >0 — delay, 0<g, <g <1 — small pa-
rameters, that describe the time-scale separation,
¢(0), B¢ [—h,O) — piecewise continuous n, -vector
function, u(#) — piecewise continuous on 7, r-vector
control function, x, € R", y, € R™.

Note that sincee, < ¢, <1, then gg, <¢, ,
€

2<1,-2-0.

81 81 & —0

The presence of two small parameters of dif-
ferent orders of smallness in the form of factors at
the derivatives of some of the variables determines
the different-rate nature of the change in the phase
coordinates in the vicinity of the point. So, x is slow,
y is fast and z is the fastest variables.

ad . oy _
Let p =d— — differentiation operator, e ”" —
t
delay operator:
e ""v(t) = v(t - h),
e "'y(t) = v(t - jh).
Introducing matrix operators
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4, (e7)* ZA”, =13,

block matrix operator and block matrix

4 (e_ph ) 4, A,

4, (e*ph ) 4, Ay

Aloene™)=| =0 2
1 1 1

—A“ eiph) 4y 4y

L & € & |
Bl
B

B(g,6,)=|—|. (1.3)

81
B3
L &

For €, >0 rewrite the system (1) in the equivalent
matrix-operator form:

x(1) x(1)

y(1) = A(sl,sz,e”’h) y(t) |+ B(e,,, )u(r).

£(1) 2(1)

For simplicity further, where this does not lead
to an ambiguous understanding, in the sequel the
arguments for matrix functions 4, (e””‘), i=13,

etc. will be omitted. We will use ||, £ max Z|aij |

J

In [14] for the system (1.1) a decoupling trans-
formation that decomposes TSPLTISD (1.1) to three
independent subsystems of lower dimension (rela-
tively faster, fast and slow variables) has been con-
structed.

For the decoupling of the TSPLTISD (1.1) next
transformation (change of variables) has been intro-
duced in [14]

&(1) x(1)
n(z) :T(sl,az,e”"’) y(1) |,
B(1) 2(1)

&(t)eR”‘, n(t)eR”Z, B(t)eR”‘, teT (1.4)

where

T(e,e,e"")= (1.5)
Zn Z12 81821_111_13 _Ssz
=|L —&HL, I,—¢H,L, —€,H, )
L, L, Ip

_ .
A“(al,az,e
_ . ~ ~
A, (&.8,.¢ ") = 8,6, H,H,L, —&,H,L,—&,H,,
—ph _ . T A
Li(glaazae P )7 H,.(Sl,sz,e ph)a i=13

are matrix operators depending on the parameters

)= I, —¢H, (Ll _SszLz)_82H2L2 >
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€,6, >0 and
p=e,/g):
ML|:8]A” 8]1412:|_ IJ.L|:81A13:|L+
A21 A22 A23
+( Ay, Ay ) Ay L=0,

L(sl,u, e ) = [Lz (sl,u, e ),L3 (al,p,e'”h )J, (1.6)
Ay — AL, +,L, (A4, — AL, )+
+ ULy (Ay — AyL,) =0, L,(&,.p,e " )eC™,
Ay — ALy +8,L, (A, —A, L)+
+ ULy (A —AyLy) =0, L (&, e ") € T,
Ay —(A4y, = A, L)L — A, L, +
+&L (4, — 4L, — (4, — A,L,) L) =0,
L (g.me?)eC™, (1.9)
Ay, — H Ay, +
+e,(LA,H, ~H,L,A,—LA,LH,)+
+e LA, +u(A,H, — AL H,—H,L, 4, ) =0,
A, —H (A, —A,L))— AL, +
+& (A4, —4;L, —(4, - 4;L,) L, ) H, - (1.11)
—gH L (A4,-4,L)=0,
Ay +e,Hy (A, — AyL, — A, L+ AL, L) +
+ ud, H, —pd L H, —
—H, (A, +&,L, A, +1ul,4,,) =0,
H, (81 e ) e C™™s
H, (el,u,e"’h ) eCm™,
H, (81 e ) e C™™,
The matrix operators
L (al,az,e”’"), H, (sl,az,e”’h), i=13

used in this transformation satisfy the algebraic
equations of Riccati and Sylvester.

This article, focuses on deriving the boundaries
of the values of small parameters, for which ap-
proximations of the (1.6)—(1.12) solutions are valid.

satisfying the equations (with

(1.7)

(1.8)

(1.10)

(1.12)

2 Measure of the Reliability of the Asymp-
totic Approximations

To prove the boundaries of the values of small
parameters let us note,

—ph
&4y, (e ) &4,

e , -ph) A&
(81 ’ ) 4y, (eiph) Ay

and rewrite (1.6) as

pL A" (81 et )—
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— uLA" (e ") L+( Ay, Ay )= AgL . (2.1)
Lemma 2.1. Suppose that det A,, #0,
det [A,, — A,,LY]#0.
Then for all pe [O, p.*) such that
. 1
p= o y s
s ||(a+bd +2(abd) 2)

2.2)

where a 247 (1,e™") = 4L ()|, 2[4,
d 2™, be) 2[4 ).
a(e) 2|47 e ") = 40 e L)

there are unique continuous functions depending on
u, 819

L(g,.pe )= [Lz (e.1e). Ly (g pe” )J ,

satisfying the equations (1.6)—(1.8), that could be
represented in asymptotic series form:

L(sl,u, e ) = ZM: u"L" (sl,e"’h)+ O(uM+l ), (2.3)

m=0

L (sl,u,e”’h ) = iumL;” (Sl,e”’h)—i- O(uM+1 ),
"= (2.4)

L (ze ™) = 2L (), i=2,3

n=0
where the terms L" (sl,e”’ h ), according to iterative

schemes

m

P(ee™)=3Hrm (), @3

n=0
where [ = L' = 4;) [4,,, 4, ],

1,12 2,12

an — A;:‘I |:Lnl,m1A +Ln,m71A

m=1 n-l1
S8 pareero e
Jj=0i=n-m+j

m=1 n

—Z Z L""AZ,}L”"""“}, m>1,n<m,

Jj=0i=n—m+j+1

A, (ef”h ) = |:A“ (eiph ) A12:| 5

0 0

PN e I e Y
12 Azl(efph) Azz s> N3 0 s “Iy3 Azs .

Proof. The existence and uniqueness of the
continuous functions

L(z—:l, TR ) = [Lz (81, TR ),L3 (sl,u, e )]
in the form of (2.3), (2.4) is similar to that is dis-
cussed in [9].

The iterative schemes (2.4), (2.6) and represen-
tation (2.5) can be proven by substituting (2.3) and
(2.5) into the equations (2.1) and comparing the co-
efficients of equal powers of p of the resulting

equations.
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Let us prove the assessment (2.2).
Denoting

I (sl,e’”h ) £ L(sl,O,e’ph ) =
=" (e.e"") = 4} [ 4;,. 4],
introducing
D(sl,u,e"’" ) = L(s] ,u,e””’)—LO (8] et )
and taking into account 4,,L’ ( g e’ ) =[4,.4,,].
rewriting (2.1) as
D =pd;! [L“ (A2 -4"L)+D(A - 4"L") -
2.7)
~['4°D-D4"D]% f(D(sl,;,t,e"’h ))
Further similar as in [9] consider

b
_ Y. a(l)d
[=:D(e.me ).||D||S( b(l)j :

and taking into account the properties of the norm, it
can be seen that,
a(e))<a(l)=a, b(g)) <b(1)=b. (2.8)
Then taking into account (2.4), for g <1 it can be
shown that if the condition,
- 1
TNE 7
a()+b()d +2(a()b(1)d )
b
ahd 1= g
b(1)

is satisfied then, “f(D(sl,u, e’ph))“ < (

for any D,D €T under the condition
|r@)-rD)|<|p-5]
i.e. f(D) is contraction mapping.

By the fixed point theorem, the equation (2.7)
has a unique solution in I', that can be a successive

ad %
approximation starting with any D’ 3(7) if,

1
|A;;||(a +bd+2(abd)" |

n< | g
Lemma 2.2. Suppose that det A, #0,
det [A, — A, L¥]#0, p<e, pe0u), u' sati-
fies (2.1). Then for all €, € [0, 81*) such that

6 = ! 2.9)

|4, = A2 7| (a+ b1+ 2\[(k +al)b )

where lé"L?” and a,b,k are any non-negative

numbers satisfying b>b =| 4L, - 4,
aza2|4, + A, LL - AL, - 4,1,

1

k>k2 , there are unique

A23 ﬁ(Dz - D3L(1)0 )

continuous  functions depending on pn, g,
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Ll<sl,u,e”’”), satisfying the equation (1.8), that

could be represented in an asymptotic series form:

L (Sl,p’e’!’h) - ﬁgill‘:’ (u,eiph )+0(8]N+1)’
=0

L(pe™) =S (e ),
m=0

where the terms, L" (e”’h) of the asymptotic series

(2.10)

can be found according to iterative schemes (2.11).
L (eiph ) = (Azz — ALY )71 x

X[L;’I""A” —iiq*l’k x

Jj=1 k=0
n m
X(AIZLTj’mk — Ay Y L j+ (2.11)
r=0 s=r
n m
+A2322L§k£17_/’m_k - “1231';m +
J=0 k=j
n.m-—n
DI I S J m>0,n>0;
j=1 k=0

with initial conditions
L") = (A~ A A Ay) (A — A4l 4,),
L (e™)=0,n<0vm<0. (2.12)
Proof. The existence and uniqueness of the
continuous functions L, (sl,u,e’””) in the form of

(2.10), (2.11) are similar to that is discussed in [9].
The iterative schemes (2.10), (2.11) and the
representation in (2.10) can be proven by substitut-
ing (2.10) into the equations (1.9) and comparing the
coefficients of equal powers of p,¢g, of the resulting

equations.
Let us prove the assessment (2.9).
Introducing

D, (s],u,e”’” ) =L (s] ,u,e’ph)—L?o (e"”}H ), i=1,2,3
and taking into account
L'(e™)= |:A22 — 4L ]71 [A21 — 4L ] )

rewrite (1.9) as

D, =g, [Azz = AL, ]_l |:_8£ A4, (52 —l_)3L?0)+
1
L (A = ALy )= L (A = A L) 1 —
-L° (A, - A4,L,) D, +
+D1((A11_A13L2)_(A12—A13L3)L(1)O)— (2.13)

-D, (AIZ - 4L, )Dl:| =

A (D1 (8. pe” )) D, :ﬁD” i=2,3.

Note that due to (2.7) for p<e, 5[, i=2,3, are
bounded as p — 0.
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)
Let Fl:{Dl(gl,,u,e"’h):"Dl"S[k;alj 2}, then

for D, eI', from (2.13) under condition B we

81
can derive

A (D1 )” <g [A22 -A4,,L, ]_] X
||

.
x[a+bi+2 (kml)b](k*“lj :

So, if the condition
1

J'|[a+r+2(k+ar)e]

k+alj

g < (2.14)
”[Azz - A23Lz

is satisfied and D, €T, then " f1 " (

e f(D,)eT,
Let D,,D, eT,. Under the condition (2.9):

[h @)= D)= [ s = ALa]”

X“(D1 ~D) (A~ AsLy) ~(Ay — A,L) L' ) -

X

~L" (4, — 4,L,)(D, - D, ) -
~(D,=D,)( A — AsLy) D, +
+D, (4, ~ 4L,)(D, - D, )| <
<e, H[A22 — AL,
(A = ALy )= (A = ALy 1P = 1Y (A, — AsLy) -

Il>.- 5~

_(Alz _A13L3)D1 +é1 (AIZ —4;,L, )” <
<g H[Azz —A,L, ]_l “"Dl —[)] ||><

x(a+b+2\[(k+at)p) <D, - D,

i.e., f,(D,) is a contraction mapping.

By the fixed point theorem, the equation (2.13)
has a unique solution in I',, that can be a successive

P
k+alj i
b

approximation starting with any D/ < (

1

i H[A22 AL ]’l”[ﬁbnz f(i+at) |

Let matrix operators H." (e””’), H)" (e”’”),

H™ (e”’h) be found according to the following it-

erative scheme:

s ()= S8 (o

j=1 k=l

n_m
_ r—j,s—k pyn—-r—jm-s—k | _
D

r=0 s=r

88

n_m
_ Jok—1 n—j,m—k nm-1 _
Ay Y D L HT T A H

=0 k=j

n_m-n

_ J-Lk=1yn—j,m—k
;;H3 LT 4 2.15)
+X§H3j’k_lL§_i’m_kA23 +L’11_]’mA1 \JA3_3 P
j=1 k=0
m>0,n>0,
with initial conditions
HY ()= 4,45,

33>

H}O,m(e ph) —

— |:A22 H:?,mfl _ZL(;,kleSO,mfk +

k=1

k=1

m—n
0,k—1 0,m—k 1
+A23 ZL3 H3 i|A33 >

H;’O(e_”h) = L;’_]’OABA;; (2.16)
Hlmn (efph ) —

= {AHH{””” —A, Z{LQI’KHI"””" -(2.17)

J=lk=j
n_m
_yJ-Lk r—j,s—k pyn—r—jm-s—k { _
ZDIDI
r=0 s=0
n m
Jj-Lk yyn—j,m-k J-Lk yn—j,m—k
DD (AL H T HI L A ) +
j=1 k=0
n_m-n n_m=n
Jj-Lk r—j,s—k n—r—j,m—s—k
DY HITY S L AL L -
j=1 k=0 r=0 s=0
eI jm—k 00!
Js n—j.m—k _ nm _
+ Hl A23L3 A]SLS (A22 A23L3 ) 4
Jj=0 k=0

m>0,n>0,
with initial conditions

— D - - -1
Hloo(e ]h) = |:A12 - A13A331A32 :H:Azz - A23A331A32 :' >

H;m (e””’ ) =
= {AIIH;I,W:I _ Amiil/z'—l,k—l[_]znfj,m,k _

j=1 k=

n_.m

J=Lk=1 yyn—jm-k n,m-1
—A, ) > LT H, + A HP" +

j=1 k=1
n_m ) n_m ) )
+A1322Lé71,k71zlerfj,ska]nfrfj,mfsfk _ (218)
j=1k=j r=0 s=0
ShN j k—1 j,m—k
_A13ZZL§ Hsn -
J=0 k=j
n_m-n

ZH k]lln/mkl423

J=1 k=1

S e kA13JA33,m>O n>0,

J=1k=j
with initial conditions,
HY (") = A4y,
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H(e™)=0,n=1,2,3,....  (2.19)

Considering the results of Lemma 2.1 and
Lemma 2.2, and the linearity of (1.10), (1.11), (1.12)

e ). H, (& me "),

H, (s] M, e”’”) it is possible to obtain the following

with respect to H, (el,p,

Corollary.
Corollary 2.1. Let the assumptions of Lemmas
2.1 and 2.2 hold. The approximations,

H3(el,p,e’ph)=
N o= (2.20)
ST () 0fe ),
H, (ope ™) =
2.21
e S (e o),
n=0 m=0
Hy (ee ™) =
N (2.22)
:ngzumHan (efph)_"_o( N+1)
n=0 m=0
where  the terms, H;" (e”’h), H;’"(e””’),

H™ (e”’ h) of the asymptotic series can be found

according to iterative schemes (2.20)—(2.22) are
valid for all e, 6[0,81*), ue[O,u*) respectively

such that W and €, are satisfying (2.2) and (2.9)
correspondingly.

3 Results and Verifications

An illustrative example of TSPLTISD is con-
sidered for the application and the verification of the
obtained results. Initially the system is solved using
a standard tool with numerical approaches to obtain
the exact subsystems for the considered TSPLTISD,
on the MATLAB Simulink platform and then the
obtained results are modeled so that they can be
compared with the exact subsystems obtained.

Example. Let’s consider an illustrative example

x(1)=—x(t)=y(t)+u(t),
e y(t)=—x(t-1)-y(t),
&,2(1) =—x(r-1)-2z(1),

1
x,y,zeR,

3.1)

with initial conditions:
x(()) = (p(O) =0.5, y(O) =2,

Z(O) =1, x(e) = (p(B) =1,0¢ [—1,0).
Considering the system (3.1) parameters in the
form (1.2) can be denoted as:
h=Ln=n,=n,=r=1,
=0,4,=-1,4,=0,B =1,

1,0 — 111 (3.2)
A2 =0, A211 =-1,4,,=-1,4,=0,B, =0,

310 =0, Azll -1, 4;,=0,4,;,=-1B8,=0.

A
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Note that det 4,, # 0,
det [4,, — A, 4;; A, ]=—1=0,

so, according to Lemmas 2.1, 2.2 and the Corollary,
considered Sigularly Perturbed System (3.1) can be
asymtotically decomposed with the use of the
introduced approach. Matrix operator equations
similar to (1.7)—(1.12) for (3.1) have the form (with
A=e” h) :

L,—&,L, —~A—pL =0, (3.3)

L, —¢,L,—pL, =0, (3.4)
L~\+gL (L, -1)=0, (3.5)
H,—¢,LH, —uH, =0, (3.6)

H, ~1+g (L, ~1)H,+&H L =0, (3.7)
&,H,(L,~1)—pH, +H, = 0. (3.8)

The first terms of expansions (2.3), (2.10) and
(2.20)+2.22) are,
LY =)\ LY =LY =0,H" =1,H) =0, H}’ =0.
Evaluating (2.2), (2.9) using the induced norm
], 2 max S Je|

(2.3), (2.10) and (2.15)«2.17) are valid for all
* * * 1 * 1
0, ), on ), & =—, = .
e[0.8"), nefon), g M I
The degenerate system for (3.1) has the form,
X (1)==x(t)+x(t=h)+u(z),
xs_(O):xo =0,5, xs_(e):(p(e)zl, 96[—1,0).
, — Boundary Layer System has the form

df(rgz ) i

- —z(‘tgz ) 2(0)=2,

| =1, the approximations

drgz
where 2(1)=z(1)+1, 1, -1 d__ ) ﬂ:(),
*og, dt dt,,
x=0,5 y=2.

— Boundary Layer System has the form

h
—ydfs' ) (e, 50-3

Kl

2 -0,x=0,5.

Similar to (9), (10), (14), (15), (19) and (20) of
[14] and the initial iterations of matrix operators of
asymptotic approximations of a decoupled system as
discussed in [15], for (3.1) it has the form,

Ago (e—ph):_l+e—17h A;)O =-1, Aé)o _
00 00 00
B =-1,B" =0, B, =0.

The 1st order approximation of the split system
(3.1) has the form:

&' (1) ==8"(1)+& (= h)+u(r),
e’ (6)=—n"(1), &B" (1) =—=(1),

where §(¢)=y(t)+1,

(3.9

(3.10)

with
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£°(0)=x,=0,5, £°(0)=p(0)=1,0<0,

n’(0)=3, °(0) = 2.
The comparison of the exact solution of (3.1)

y(6)=n’(1)-L"€

x(1)=€(1)+

under u(1)=0, € =0,01, &, =0,001 and under
g, =0,1, & =0,001 with the solutions obtained on

2(1)

=n'(1)-¢

(¢
h)
B () + (1L — L2)e (1

&' (-

O(n),
)+0(n)=
+0(pn),

)= L’ (1) +O0(w) =

the basis of the 1st order approximations.

=B ()-8 (-

n)+0(w).

90

The simulation results obtained in the MATLAB
Simulink has been presented in the figures 3.1-3.6.

05 1 ! I | I
0 05 1 15 2 25 3

Figure 3.1 — x-component of exact (thick solid) and its asymptotic approximations of the 1st order
(dotted line) under €, = 0,01, &, = 0,001

05

05 L 1 |
[} 05 1 15 2 25 3

Figure 3.2 — x-component of exact (thick solid) and its asymptotic approximations of the 1st order
(dotted line) under ¢, =0,1, &, =0,001

T T T
yo
2~ =
15’» —
1= -
o:,L .
ol 1
osH - — -
[ / ——
I ———————— Ce—
BA\ | ]
K -1
1 | |
0 05 1 15 2 25 3

Figure 3.3 — y-component of exact (thick solid) and its asymptotic approximations of the 1st order
(dotted line) under ¢, = 0,01, ¢, =0,001
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—y
e
2 =
|
|
15 —
|
\
\
11| =
\
\
\
\
os|- | .
\
\
o ““. -
\ - i
05— N\ e — -
\\ T ———— T 7
\ / — —
" y = . A
. /
1 B -
15 -
1 | 1 1 1
0 05 1 15 2 25 3

Figure 3.4 — y-component of exact (thick solid) and its asymptotic approximations of the 1st order
(dotted line) under ¢, =0,1, &, =0,001

1 1

o 05 1

2 25 3

Figure 3.5 — z-component of exact (thick solid) and its asymptotic approximations of the 1st order
(dotted line) under €, = 0,01, &, = 0,001
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-05

0 05 1

15

2 25 3

Figure 3.6 — z-component of exact (thick solid) and its asymptotic approximations of the 1st order
(dotted line) under €, =0,1,&, =0,001

Conclusion

The asymptotic approximation discussed in this
paper completely splits the Three-time-scale Singu-
larly Perturbed Systems with multiple commensurate
delays in the slow state variables (1.1), into their
subsystems according to the tempo to any degree of
accuracy in powers of the small parameters present
in the system.
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L and H need to satisfy the algebraic matrix
equations (1.7)—(1.12) for the complete decoupling
of the TSPLTISD into its subsystems respectively.
Considering the fact that /(D) is contractions map-
ping subjected to the constructed bounds of small
parameters 1, €,, f(D) has a unique solution which

can be successively approximated starting with D,,.

91



C.A. Naligama, O.B. Tsekhan

Further by considering the concepts of the fixed
point theorem for (2.7) and (2.13) and fact that
D=L-L, and D=H-H, it can be concluded

that the asymptotic approximations for the L and H
matrixes hold, small parameter of the system sub-
jected to the boundaries as defined by Lemma 2.1,
2.2, and Corollary 2.1. Thus, by Lemma 2.1, 2.2 and
Corollary 2.1 on the reliability of the asymptotic
approximations for the L, H matrixes, it can be con-
sidered that when the boundary requirements for the
small parameters are met asymptotic approximations
(2.3), (2.10) and (2.20)—(2.22) to be valid, and hence
the subsystems (relatively faster, fast and slow vari-
ables) for the generalized TSPLTISD can be con-
structed in the form of asymptotic approximations.

Secondly, a sample TSPLTISD that satisfies
the reliability boundaries for small parameters as
stated in (2.7) and (2.13) is considered. With refer-
ence to the comparison results of the exact subsys-
tems and the constructed 0" degree asymptotic ap-
proximations for subsystems in (3.1) via Figures,
3.1-3.6 it can be concluded that asymptotic ap-
proximations are valid and accurately represents the
subsystems in terms of the qualitative behavior of
the subsystems.

Note that with reference to the simulation re-
sults shown in Figures 3.1-3.6 it can be concluded
that, as the values of small parameters decrease, the
accuracy of the approximation increases. As a rule,
for the practice purposes, obtaining 0—1 approxima-
tions are sufficient.

But 1* order approximation for the considered
case (3.1) is not an accurate representation of the
exact subsystem. And 2" order approximation and
higher order approximations for the subsystems can
be constructed that construct the subsystems more
accurately. Based on (1.4), (1.5) and asymptotic ap-
proximations of L, H, higher approximations of sys-
tem solutions could be obtained.

The use of the constructed asymptotic ap-
proximations of the decoupling transformation al-
lows one to reduce the solution of a number of sta-
bility, control, and estimation problems for large
systems with singular perturbations and delays to
systems of lower dimension that are independent or
regularly dependent on a small parameter. The de-
composition algorithm can be implemented in soft-
ware for computer algebra systems, the obtained
results can be used to solve problems of analysis and
synthesis of three time-scale linear stationary singu-
larly perturbed systems with delay.
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