УДК 512.548

DOI: https://doi.org/10.54341/20778708_2022_2_51_63

EDN: UJHSDS

ИДЕМПОТЕНТЫ В ПОЛИАДИЧЕСКИХ ГРУППОИДАХ СПЕЦИАЛЬНОГО ВИДА

А.М. Гальмак

Белорусский государственный университет пищевых и химических технологий, Могилёв

IDEMPOTENTS IN POLYADIC GROUPOIDS OF SPECIAL FORM

A.M. Gal'mak

Belarusian State University of Food and Chemical Technologies, Mogilev

Аннотация. В статье изучаются идемпотенты в полиадических группоидах специального вида. Основной результат получен для l-арной группы специального вида, то есть для полиадической группы с l-арной операцией $\eta_{s,\sigma,k}$, которая называется полиадической операцией специального вида и определяется на декартовой степени A^k n-арной группы < A, $\eta > c$ помощью подстановки $\sigma \in \mathbf{S}_k$, удовлетворяющей условию $\sigma^1 = \sigma$, и n-арной операции η . В качестве следствий получены результаты для полиадических групп специального вида c (2s+1)-арной операцией $\eta_{s,\sigma,k}$, которая определена на декартовой степени A^k тернарной группы < A, $\eta > c$ помощью подстановки $\sigma \in \mathbf{S}_k$, удовлетворяющей условию $\sigma^{2s+1} = \sigma$, и тернарной операции η .

Ключевые слова: полиадическая операция, п-арная группа, идемпотент, подстановка.

Для цитирования: Γ альмак, A.M. Идемпотенты в полиадических группоидах специального вида / A.M. Гальмак // Проблемы физики, математики и техники. -2022. - № 2 (51). -C. 63-67. - DOI: https://doi.org/10.54341/20778708_2022_2_51_63 - EDN: UJHSDS

Abstract. The article focuses on idempotents in polyadic groups of a special form. The main result was obtained for l-ary group of a special form, i. e. for polyadic group with l-ary operation $\eta_{s,\sigma,k}$, that is called polyadic operation of a special form and is defined on Cartesian power A^k of n-ary group < A, $\eta >$ by substitution $\sigma \in \mathbf{S}_k$, satisfying the condition $\sigma^l = \sigma$, and n-ary operation η . As corollaries there were obtained the results for polyadic groups of a special form with (2s+1)-ary operation $\eta_{s,\sigma,k}$, which is defined on Cartesian power A^k of ternary group < A, $\eta >$ by substitution $\sigma \in \mathbf{S}_k$ which satisfies the condition $\sigma^{2s+1} = \sigma$, and ternary operation η .

 $\textbf{Keywords:}\ polyadic\ operation, \textit{n-ary}\ group, \textit{idempotent}, \textit{substitution}.$

For citation: Gal'mak, A.M. Idempotents in polyadic groupoids of special form / A.M. Gal'mak // Problems of Physics, Mathematics and Technics. – 2022. – № 2 (51). – P. 63–67. – DOI: https://doi.org/10.54341/20778708_2022_2_51_63 (in Russian). – EDN: UJHSDS

Ввеление

Данная статья посвящена изучению идемпотентов в l-арном группоиде $< A^k, \eta_{s,\,\sigma,\,k}>$ специального вида с l-арной операцией $\eta_{s,\,\sigma,\,k}$, называемой полиадической операцией специального вида. Основной результат будет доказан для l-арной группы $< A^k, \eta_{s,\,\sigma,\,k}>$.

Определение l-арной операцией $\eta_{s, \sigma, k}$, которая определяется с помощью подстановки σ множества $\{1, ..., k\}$ и n-арной операции η на декартовой степени A^k n-арного группоида $< A, \eta >$, можно найти в [1]. При этом на A^k вначале определяется n-арная операция $\eta_{1, \sigma, k}$, а затем с помощью неё -l-арная операция $\eta_{s, \sigma, k}$.

Можно показать (см., например, [1]), что l-арную операцию $\eta_{s,\,\sigma,\,k}$ можно определить покомпонентно следующим образом. Если $< A,\,\eta > -$ n-арный группоид,

$$n \ge 2, s \ge 1, l = s(n-1) + 1, k \ge 2, \sigma \in \mathbf{S}_k.$$

 $\mathbf{x}_i = (x_{i1}, \dots, x_{ik}), i = 1, 2, \dots, l,$

 $\eta_{s,\,\sigma,\,k}(\mathbf{x}_1\,\ldots\,\mathbf{x}_l)=(y_1,\,\ldots,y_k),$ то для любого $j\in\{1,\,\ldots,k\}$ j-ая компонента y_j находится по формуле

$$y_{j} = \eta(x_{1j}x_{2\sigma(j)} \dots x_{(n-1)\sigma^{n-2}(j)}$$

$$\eta(x_{n\sigma^{n-1}(j)} \dots x_{(2(n-1))\sigma^{2(n-1)-1}(j)} \eta(\dots \dots \eta(x_{((s-1)(n-1)+1)\sigma^{(s-1)(n-1)}(j)} \dots \dots \dots x_{(s(n-1)+1)\sigma^{s(n-1)}(j)} \dots))).$$

Если *п*-арная операция η ассоциативна, то

$$y_{j} = \eta(x_{1j}x_{2\sigma(j)} \dots x_{(s(n-1)+1)\sigma^{s(n-1)}(j)}) =$$

= $\eta(x_{1j}x_{2\sigma(j)} \dots x_{j\sigma^{j-1}(j)}), j = 1, \dots, k,$

откуда для подстановки σ из \mathbf{S}_k , удовлетворяющей условию $\sigma^l = \sigma$, следует

$$y_j = \eta(x_{1j}x_{2\sigma(j)} \dots x_{(l-1)\sigma^{l-2}(j)} x_{lj}).$$

Для бинарной операции η *l*-арная операция $\eta_{s,\,\sigma,\,k}$, где l=s+1, совпадает с (s+1)-арной операцией $[\]_{s+1,\,\sigma,\,k}$, обозначаемой также символом

63

[] $_{l,\,\sigma,\,k}$. Изучению этой операции посвящена книга [2]. Частными случаями l-арной операции [] $_{l,\,\sigma,\,k}$, соответствующими циклу $\sigma = (12\,\ldots\,k)$, являются две полиадические операции Э. Поста [3]. Одну из них он определил на декартовой степени симметрической группы, вторую — на декартовой степени полной линейной группы над полем комплексных чисел.

1 Используемые результаты

Согласно следующей теореме, тождественность подстановки σ^{l-1} влечёт за собой перенос ассоциативности с n-арной операции η на l-арную операцию $\eta_{s,\,\sigma,\,b}$.

Теорема 1.2 [1]. Если n-арная операция η – ассоциативна, подстановка σ из S_k удовлетворяет условию $\sigma^l = \sigma$, то l-арная операция $\eta_{s,\,\sigma,\,k}$ ассоциативна.

Тождественность подстановки σ^{l-1} переносит с n-арной группы < A, $\eta >$ на l-арный группоид $< A^k$, $\eta_{s,\sigma,k} >$ не только ассоциативность, но и свойство быть «полиадической группой».

Теорема 1.3 [1]. Если $< A, \eta > -$ *п-арная* группа, подстановка σ удовлетворяет условию $\sigma^l = \sigma, mo < A^k, \eta_{s, \sigma, k} > - l$ -арная группа.

Согласно Э. Посту [3], последовательность $e_1 \dots e_{k(n-1)}$, где $k \ge 1$, элементов n-арной группы $< A, \eta >$ называют её нейтральной последовательностью, если

$$\eta(e_1 \ldots e_{k(n-1)}x) = x, \ \eta(xe_1 \ldots e_{k(n-1)}) = x$$
 для любого $x \in A.$

Критерии нейтральности последовательности элементов n-арной группы содержатся в следующем предложении.

Предложение 1.1 [3]. Если $< A, \eta > - n$ -арная группа, $k \ge 1, e_1, ..., e_{k(n-1)} \in A$, то следующие утверждения эквивалентны:

- 1) последовательность $e_1 \dots e_{k(n-1)}$ нейтральная;
- 2) существует элемент $a \in A$ такой, что $\eta(e_1 \dots e_{k(n-1)}a) = a;$
- 3) существует элемент $a \in A$ такой, что $\eta(ae_1 \dots e_{k(n-1)}) = a$.

Множество всех идемпотентов полиадического группоида $< A, \eta >$ будем обозначать символом $\mathbf{I}(A, \eta)$.

Определения и основные свойства *п*-арной группы, а также более подробную информацию о нейтральных и обратных последовательностях можно найти в книгах [4], [5].

2 Общий случай

Легко проверяется, что для любого идемпотента ϵ n-арного группоида $< A, \eta >$ элемент $\mathbf{\epsilon} = (\underbrace{\epsilon, ..., \epsilon})$ является идемпотентом в l-арном

группоиде $< A^k$, $\eta_{s,\,\sigma,\,k}>$. Это следует и из следующего предложения.

Предложение 2.1. Если < A, $\eta > -$ *п-арный* группоид, то элемент $\mathbf{\varepsilon} = (\varepsilon_1, ..., \varepsilon_k)$ является идемпотентом в l-арном группоиде $< A^k$, $\eta_{s,\sigma,k} >$ тогда и только тогда, когда для любого $j \in \{1, ..., k\}$ выполняется условие

$$\eta(\varepsilon_{j}\varepsilon_{\sigma(j)} \dots \varepsilon_{\sigma^{n-2}(j)}
\eta(\varepsilon_{\sigma^{n-1}(j)} \dots \varepsilon_{\sigma^{2(n-1)-1}(j)} \eta(\dots
\dots \eta(\varepsilon_{\sigma^{(s-1)(n-1)}(j)} \dots \varepsilon_{\sigma^{s(n-1)}(j)} \dots))) = \varepsilon_{j}.$$
(2.1)

 \mathcal{A} оказательство. Если $oldsymbol{\epsilon}$ — идемпотент в < A^k , $\eta_{s,\,\sigma,\,k}$ >, то

$$\eta_{s, \sigma, k}(\underline{\varepsilon \ldots \varepsilon}) = \varepsilon,$$

то есть

$$\eta_{s,\,\sigma,\,k}(\underbrace{(\epsilon_1,\ldots,\epsilon_k)\ldots(\epsilon_1,\ldots,\epsilon_k)}_{j}) = (\epsilon_1,\ldots,\epsilon_k).$$

Применив к последнему равенству приведённое во введении определение l-арной операции $\eta_{s, \sigma, k}$, получим равенство (2.1).

Если теперь компоненты $\varepsilon_1, ..., \varepsilon_k$ определяются равенством (2.1), то верно последнее равенство, то есть ε – идемпотент в < A^k , $\eta_{s,\,\sigma,\,k}$ >. Предложение доказано.

Следствие 2.1. Если $< A, \eta > -$ п-арная полугруппа, то элемент $\mathbf{\varepsilon} = (\varepsilon_1, ..., \varepsilon_k)$ является идемпотентом в l-арном группоиде $< A^k, \eta_{s,\sigma,k} >$ тогда и только тогда, когда компоненты $\varepsilon_1, ..., \varepsilon_k$ удовлетворяют условиям

$$\eta(\varepsilon_{1}\varepsilon_{\sigma(1)}\varepsilon_{\sigma^{2}(1)}\ldots\varepsilon_{\sigma^{l-1}(1)}) = \varepsilon_{1},$$

$$\ldots \qquad (2.2)$$

$$\eta(\varepsilon_{k}\varepsilon_{\sigma(k)}\varepsilon_{\sigma^{2}(k)}\ldots\varepsilon_{\sigma^{l-1}(k)}) = \varepsilon_{k}.$$

Если в следствии 2.1 положить n = 2, то получим предложение 3.8.1 из [2].

Для подстановки $\sigma \in \mathbf{S}_k$, удовлетворяющей условию $\sigma^l = \sigma$, элементы $\epsilon_{\sigma^{l-1}(j)}$ в (2.2) заменяются элементами ϵ_j . При этом l-арный группоид $< A^k$, $\eta_{s,\,\sigma,\,k}>$, согласно теореме 1.2, становится l-арной полугруппой.

Следствие 2.2. Если $< A, \eta > -$ п-арная полугруппа, подстановка $\sigma \in \mathbf{S}_k$ удовлетворяет условию $\sigma^l = \sigma$, то элемент $\mathbf{\varepsilon} = (\varepsilon_1, ..., \varepsilon_k)$ является идемпотентом в l-арной полугруппе $< A^k, \eta_{s,\sigma,k} >$ тогда и только тогда, когда компоненты $\varepsilon_1, ..., \varepsilon_k$ удовлетворяют условиям

$$\eta(\varepsilon_{1}\varepsilon_{\sigma(1)}\varepsilon_{\sigma^{2}(1)}\dots\varepsilon_{\sigma^{l-2}(1)}\varepsilon_{1}) = \varepsilon_{1},$$

$$\dots$$

$$\eta(\varepsilon_{k}\varepsilon_{\sigma(k)}\varepsilon_{\sigma^{2}(k)}\dots\varepsilon_{\sigma^{l-2}(k)}\varepsilon_{k}) = \varepsilon_{k}.$$
(2.3)

Если в следствии 2.2 положить n=2, то получим следствие 3.8.2 из [2].

Применяя к следствию 2.2 теорему 1.3, получим

Спедствие 2.3. Если $< A, \eta > -n$ -арная группа, подстановка $\sigma \in \mathbf{S}_k$ удовлетворяет условию $\sigma^l = \sigma$, то элемент $\mathbf{\varepsilon} = (\varepsilon_1, ..., \varepsilon_k)$ является идемпотентом в l-арной группе $< A^k$, $\eta_{s,\sigma,k} > m$ огда и только тогда, когда компоненты $\varepsilon_1, \ldots, \varepsilon_k$ удовлетворяют условиям (2.3).

Ввиду предложения 1.1, следующие два следствия равносильны следствию 2.3.

Спедствие 2.4. Если $< A, \eta > -n$ -арная группа, подстановка $\sigma \in \mathbf{S}_k$ удовлетворяет условию $\sigma^l = \sigma$, то элемент $\mathbf{\varepsilon} = (\varepsilon_1, ..., \varepsilon_k)$ является идемпотентом в l-арной группе $< A^k, \eta_{s,\sigma,k} >$ тогда и только тогда, последовательности

$$\varepsilon_1 \varepsilon_{\sigma(1)} \varepsilon_{\sigma^2(1)} \dots \varepsilon_{\sigma^{l-2}(1)}, \dots, \varepsilon_k \varepsilon_{\sigma(k)} \varepsilon_{\sigma^2(k)} \dots \varepsilon_{\sigma^{l-2}(k)}$$

являются нейтральными $\varepsilon < A, \eta >$.

Спедствие 2.5. Если $< A, \eta > -n$ -арная группа, подстановка $\sigma \in \mathbf{S}_k$ удовлетворяет условию $\sigma^l = \sigma$, то элемент $\boldsymbol{\varepsilon} = (\varepsilon_1, ..., \varepsilon_k)$ является идемпотентом в l-арной группе $< A^k, \eta_{s,\sigma,k} >$ тогда и только тогда, последовательности

$$\varepsilon_{\sigma(1)} \varepsilon_{\sigma^2(1)} \dots \varepsilon_{\sigma^{l-2}(1)} \varepsilon_1, \dots, \varepsilon_{\sigma(k)} \varepsilon_{\sigma^2(k)} \dots \varepsilon_{\sigma^{l-2}(k)} \varepsilon_k$$

являются нейтральными в $< A, \eta >$.

Если в следствиях 2.4 и 2.5 положить n=2, то получим следствие 3.8.3 из [2].

В качестве подстановки σ в следствиях 2.2 – 2.5 можно взять любую подстановку σ из S_k , удовлетворяющую условию $\sigma^n = \sigma$, так как она будет удовлетворять и условию

$$\sigma^l = \sigma^{s(n-1)+1} = \sigma.$$

В частности, можно взять любой цикл σ длины n-1 из \mathbf{S}_k , если $n \leq k+1$. Например, цикл $\sigma = (12 \dots n-1)$.

3 Основной результат

В достаточном утверждении следствия 2.3 число равенств в (2.3) можно уменьшить. Для этого нам понадобится

Лемма 3.1. Пусть $l \ge 2$, $k \ge 2$, σ — подстановка из \mathbf{S}_k , $\sigma^l = \sigma$, $\sigma(j) = m$ для некоторых $j, m \in \{1, ..., k\}$, $a_1, ..., a_k$ — элементы n-арной группы $< A, \eta >$. Если

$$\eta(a_j a_{\sigma(j)} a_{\sigma^2(j)} \dots a_{\sigma^{l-2}(j)} a_j) = a_j,$$
 (3.1)

mo

$$\eta(a_m a_{\sigma(m)} a_{\sigma^2(m)} \dots a_{\sigma^{l-2}(m)} a_m) = a_m.$$
(3.2)

Доказательство. Так как $\sigma(j) = m$, то

$$a_{\sigma(j)} = a_m, \ a_{\sigma^{s}(j)} = a_{\sigma^{s-1}(\sigma(j))} = a_{\sigma^{s-1}(m)}$$

для любого $s \ge 2$, в частности,

$$a_j = a_{\sigma^{l-1}(j)} = a_{\sigma^{l-2}(m)}$$
.

Поэтому из (3.1) следует

$$\eta(a_j a_m a_{\sigma(m)} \dots a_{\sigma^{l-3}(m)} a_{\sigma^{l-2}(m)}) = a_j,$$

откупа

$$\eta(\beta\eta(a_ja_ma_{\sigma(m)} \dots a_{\sigma^{l-3}(m)}a_{\sigma^{l-2}(m)})a_m) = \eta(\beta a_ja_m),$$

где β — любая обратная последовательность в $\langle A, \eta \rangle$ для элемента a_j . Из полученного равенства ввиду нейтральности последовательности βa_i следует (3.2).

Замечание 3.1. В качестве обратной последовательности β из леммы 3.1 можно взять последовательность $\overline{a_j}\underbrace{a_j \dots a_j}_{n-3}$ при $n \ge 3$ или

обратный элемент a_i^{-1} для элемента a_i при n=2.

Спедствие 3.1. Пусть $l \ge 2, \ k \ge 2, \ \sigma - \mu \nu \kappa n$ из \mathbf{S}_k длины $k, \ \sigma^l = \sigma, \ a_1, ..., a_k - элементы n-арной группы <math>< A, \ \eta > .$ Если равенство (3.1) верно для некоторого $j \in \{1, ..., k\}$, то оно верно для любого $j \in \{1, ..., k\}$.

Теорема 3.1. Пусть
$$< A, \eta > - n$$
-арная группа, $\mathbf{\varepsilon} = (\varepsilon_1, ..., \varepsilon_k) \in A^k$,

 $\sigma = \sigma_1 \dots \sigma_p -$ разложение в произведение независимых циклов, исключая циклы единичной длины, подстановки $\sigma \in \mathbf{S}_k$, удовлетворяющей условию $\sigma^l = \sigma$. Тогда:

1) если элемент ε является идемпотентом в l-арной группе $< A^k$, $\eta_{s,\,\sigma,\,k}>$, то для каждой компоненты ε_m , индекс которой подстановка σ оставляет неподвижным, верно равенство

$$\eta(\underbrace{\varepsilon_m \dots \varepsilon_m}_{l}) = \varepsilon_m, \tag{3.3}$$

а для каждого цикла $\sigma_r (r = 1, ..., p)$ верно равенство

$$\eta(\varepsilon_{i_{r}}\varepsilon_{\sigma(i_{r})}\varepsilon_{\sigma^{2}(i_{r})}\ldots\varepsilon_{\sigma^{l-2}(i_{r})}\varepsilon_{i_{r}})=\varepsilon_{i_{r}},\quad(3.4)$$

где i_r – любой символ, входящий в запись цикла σ_r ;

2) если для каждой компоненты ε_m , индекс которой подстановка σ оставляет неподвижным, верно равенство (3.3), а для каждого цикла σ_r ($r=1,\ldots,p$) верно равенство (3.4), где i_r – некоторый символ, входящий в запись цикла σ_r , то элемент ε является идемпотентом в l-арной группе $< A^k$, $\eta_{s.\,\sigma.\,k} >$.

Доказательство. Дополним разложение из формулировки теоремы циклами длины 1:

$$\sigma = \sigma_1 \dots \sigma_p \sigma_{p+1} \dots \sigma_t,$$

где $\sigma_{p+1}, \ldots, \sigma_t$ – все циклы длины 1. Пусть

$$X_1, ..., X_p, X_{p+1}, ..., X_t$$

- σ -орбиты, соответствующие циклам $\sigma_1, ..., \sigma_p,$ $\sigma_{p+1}, ..., \sigma_t$, то есть

$$X = X_1 \cup \ldots \cup X_p \cup X_{p+1} \cup \ldots \cup X_t,$$

 $X_r \cap X_s = \emptyset, r \neq s,$

где $X = \{1, 2, ..., k\}$. Через l_r обозначим длину цикла σ_r (r = 1, ..., t) или, что то же самое, мощность орбиты X_r . Ясно, что

$$l_{p+1} = \ldots = l_t = 1.$$

Кроме того, положим

$$X_{p+1} = \{i_{p+1}\}, ..., X_t = \{i_t\},$$

то есть $i_{p+1}, ..., i_t$ – все символы, которые подстановка σ оставляет неподвижными.

1) Согласно следствию 2.3, компоненты $\varepsilon_1, ..., \varepsilon_k$ идемпотента ε удовлетворяют равенствам (2.3). В этих равенствах каждому из неподвижных символов $i_{p+1}, ..., i_t$ соответствует равенство (3.4) для r=p+1, ..., t, которое совпадает с равенством

$$\eta(\underbrace{\varepsilon_{i_r} \ldots \varepsilon_{i_r}}_{I}) = \varepsilon_{i_r},$$

то есть верны равенства (3.3),если $m \in \{i_{p+1}, ..., i_t\}.$

Для переставляемых символов равенства (3.4) содержатся среди равенств (2.3).

2) Если подстановка о оставляет неподвижным индекс m компоненты ε_m , то равенство (3.3) совпадает с равенством

$$\eta(\varepsilon_m \varepsilon_{\sigma(m)} \varepsilon_{\sigma^{2}(m)} \dots \varepsilon_{\sigma^{l-2}(m)} \varepsilon_m) = \varepsilon_m.$$

Пусть теперь $\sigma(m) \neq m$, и пусть для определённости символ m принадлежит σ -орбите X_r для некоторого $r \in \{1, ..., p\}$. Если i_r – некоторый элемент σ -орбиты X_r , то

$$\sigma_r = (i_r \ \sigma(i_r) \ \sigma^2(i_r) \dots \sigma^{l_r-1}(i_r)).$$

Для сокращения записей положим

$$m_1 = i_r,$$

 $m_2 = \sigma(i_r) = \sigma(m_1),$
 $m_3 = \sigma^2(i_r) = \sigma(m_2),$
...
 $m_L = \sigma^{l_r-1}(i_r) = \sigma(m_{L-1}).$

По лемме 3.1 из равенства (3.4), справедливого для некоторого символа $m_1 = i_r$, входящего в запись цикла σ_r , следуют l_r-1 равенств для остальных символов этого цикла:

$$\begin{split} \eta(\varepsilon_{m_2}\varepsilon_{\sigma(m_2)}\varepsilon_{\sigma^2(m_2)}&\ldots\varepsilon_{\sigma^{l-2}(m_2)}\varepsilon_{m_2})=\varepsilon_{m_2}\,,\\ &\ldots\\ \eta(\varepsilon_{m_{l_r}}\varepsilon_{\sigma(m_{l_r})}\varepsilon_{\sigma^2(m_1)}&\ldots\varepsilon_{\sigma^{l-2}(m_1)}\varepsilon_{m_{l_r}})=\varepsilon_{m_{l_r}}\,, \end{split}$$

то есть равенство (3.4) верно для любого символа i_r , входящего в запись цикла σ_r .

Таким образом, все компоненты $\varepsilon_1, ..., \varepsilon_k$ удовлетворяют условиям (2.3) независимо от того оставляет подстановка о их индексы неподвижными или переставляет. По следствию 2.3 элемент ϵ является идемпотентом в l-арной груп- $\pi e < A^k$, $\eta_{s,\sigma,k} >$.

Замечание 3.2. Ясно, что каждому циклу σ_r (r = 1, ..., p) длины $l_r \ge 2$ в (2.3) соответствует l_r равенств. Из теоремы 3.1 следует, что в достаточном утверждении следствия 2.3 эти l_r равенств можно заменить одним равенством. Следовательно, число равенств в (2.3) можно уменьшить на $l_1 + ... + l_p - p$. Таким образом, в достаточном утверждении следствия 2.3 k равенств в (2.3) можно заменить следующими tравенствами

$$\begin{split} \eta(\epsilon_{i_{l}}\epsilon_{\sigma(i_{l})}\epsilon_{\sigma^{2}(i_{l})}\ldots\epsilon_{\sigma^{l-2}(i_{l})}) &= \epsilon_{i_{l}}\;,\\ \eta(\epsilon_{i_{p}}\epsilon_{\sigma(i_{p})}\epsilon_{\sigma^{2}(i_{p})}\ldots\epsilon_{\sigma^{l-2}(i_{p})}) &= \epsilon_{i_{p}}\;,\\ \eta(\underbrace{\epsilon_{i_{p+1}}\ldots\epsilon_{i_{p+1}}}) &= \epsilon_{i_{p+1}}\;,\ldots,\eta(\underbrace{\epsilon_{i_{r}}\ldots\epsilon_{i_{r}}}) &= \epsilon_{i_{r}}\;. \end{split}$$

Так как цикл σ из \mathbf{S}_k длины k имеет порядок k, то условие $\sigma^l = \sigma$ равносильно равенству

l-1=tk для некоторого $t\geq 1$. Поэтому теорема 3.1 позволяет сформулировать

Следствие 3.2. Пусть $< A, \eta > - n$ -арная группа, $\mathbf{\varepsilon} = (\varepsilon_1, ..., \varepsilon_k) \in A^k$, σ – цикл длины k из \mathbf{S}_k , l-1 = tk для некоторого $t \ge 1$. Тогда:

1) если элемент в является идемпотентом в l-арной группе < A^k , $\eta_{s,\sigma,k}>$, то $\eta(\underbrace{\alpha\dots\alpha}_{t}\epsilon_{j})=\epsilon_{j}$

$$\eta(\underbrace{\alpha \dots \alpha}_{j} \varepsilon_{j}) = \varepsilon_{j} \tag{4.3}$$

для любого $j\in\{1,\,...,\,k\}$, где

$$\alpha = \varepsilon_j \varepsilon_{\sigma(j)} \varepsilon_{\sigma^2(j)} \dots \varepsilon_{\sigma^{k-1}(j)};$$

2) если для некоторого $j \in \{1, ..., k\}$ верно (4.3), то элемент в является идемпотентом в l-арной группе $< A^k$, $\eta_{s,\sigma,k} >$.

Следствие 3.2 можно сформулировать иначе, явно указав множество $I(A^k, \eta_{s,\sigma,k})$ всех идемпотентов *l*-арной группы $< A^k$, $\eta_{s,\sigma,k} >$.

Следствие 3.3. Пусть $< A, \eta > -$ *п-арная* группа, σ — цикл длины k из S_k , l-1=tk для некоторого $t \ge 1$. Тогда

$$\mathbf{I}(A^{k}, \eta_{s,\sigma,k}) = \{(\varepsilon_{1}, ..., \varepsilon_{k}) \in A^{k} \mid \eta(\underbrace{\varepsilon_{j}\varepsilon_{\sigma(j)}...\varepsilon_{\sigma^{k-1}(j)}}_{t}...\varepsilon_{j}\varepsilon_{\sigma(j)}...\varepsilon_{\sigma^{k-1}(j)}\underbrace{\varepsilon_{j}}_{t}) = \varepsilon_{j} \}$$

для любого $j \in \{1, ..., k\}$. В частности, $\mathbf{I}(A^k, \eta_{s, \sigma, k}) = \{(\varepsilon_1, ..., \varepsilon_k) \in A^k \mid$ $\eta(\underbrace{\epsilon_1\epsilon_{\sigma(1)}\ldots\epsilon_{\sigma^{k-1}(1)}}_{}\ldots\underbrace{\epsilon_1\epsilon_{\sigma(1)}\ldots\epsilon_1\epsilon_{\sigma^{k}}}_{} \underbrace{\epsilon_{\sigma(1)}\ldots\epsilon_{\sigma^{k-1}(1)}}_{} \underbrace{\epsilon_1}) = \epsilon_1\}.$

Полагая в следствии 3.3 $\sigma = (1 \ 2 \dots k), j = 1,$ получим

Следствие 3.4. Если $< A, \eta > - n$ -арная групna, k делит l-1, то

$$\mathbf{I}(A^k, \eta_{s, (12...k), k}) = \{(\varepsilon_1, ..., \varepsilon_k) \in A^k \mid \eta(\underbrace{\varepsilon_1 \varepsilon_2 ... \varepsilon_k}_{t} ... \varepsilon_1 \varepsilon_2 ... \varepsilon_k) \in \varepsilon_1\}.$$

Считая в теореме 3.1 и следствии 3.4 $< A, \eta > -$ группой (n = 2), получим в качестве следствий соответственно теорему 3.8.5 и следствие 3.8.9 из [2].

Полагая в следствиях 3.3 и 3.4 k = n - 1, получим ещё два следствия.

Следствие 3.5. Пусть $< A, \eta > - n$ -арная группа, σ — цикл длины n-1 из \mathbf{S}_{n-1} . Тогда

$$\mathbf{I}(A^{n-1}, \eta_{s, \sigma, n-1}) = \{ (\varepsilon_1, \dots, \varepsilon_{n-1}) \in A^{n-1} \mid \eta(\underbrace{\varepsilon_j \varepsilon_{\sigma(j)} \dots \varepsilon_{\sigma^{n-2}(j)}}_{s} \dots \varepsilon_j \varepsilon_{\sigma(j)} \dots \varepsilon_{\sigma^{n-2}(j)} \underbrace{\varepsilon_j}_{s}) = \varepsilon_j \}$$

для любого
$$j \in \{1, ..., n-1\}$$
. В частности,
$$\mathbf{I}(A^{n-1}, \eta_{s, \, \sigma, \, n-1}) = \{(\varepsilon_1, \, ..., \, \varepsilon_{n-1}) \in A^{n-1} \mid \eta(\underbrace{\varepsilon_1 \varepsilon_{\sigma(1)} \dots \varepsilon_{\sigma^{n-2}(1)}}_{\epsilon_n} \dots \varepsilon_1 \varepsilon_{\sigma(1)} \dots \varepsilon_{\sigma^{n-2}(1)}^{n-2} \varepsilon_1) = \varepsilon_1 \}.$$

Следствие 3.6. Если $< A, \eta > - n$ -арная груп-

$$\mathbf{I}(A^{n-1}, \eta_{s, (12...n-1), n-1}) = \{(\varepsilon_1, ..., \varepsilon_{n-1}) \in A^{n-1} \mid \eta(\underbrace{\varepsilon_1 \varepsilon_2 ... \varepsilon_{n-1} ... \varepsilon_1 \varepsilon_2 ... \varepsilon_{n-1}}_{s} \varepsilon_1) = \varepsilon_1 \}.$$

Замечание 3.3. Теорема 3.1 и следствия из неё могут быть переформулированы на языке нейтральных последовательностей.

4 Тернарный случай (*n* = **3**)

Сформулируем следствия из результатов, полученных в разделах 2 и 3, считая $< A, \eta >$ тернарным группоидом.

Предложению 2.1 и следствиям 2.1–2.5 соответствуют следующие следствия.

Спедствие 4.1. Если $< A, \eta > -$ тернарный группоид, то элемент $\mathbf{\varepsilon} = (\varepsilon_1, ..., \varepsilon_k)$ является идемпотентом в (2s+1)-арном группоиде $< A^k, \eta_{s,\sigma,k} >$ тогда и только тогда, когда для любого $j \in \{1, ..., k\}$ выполняется условие

$$\begin{split} &\eta(\epsilon_{j}\epsilon_{\sigma(j)}\,\eta(\epsilon_{\sigma^{2}(j)}\epsilon_{\sigma^{3}(j)}\,\eta(\ldots)\\ &\eta(\epsilon_{\sigma^{2(s-1)}(j)}\epsilon_{\sigma^{2s-1}(j)}\epsilon_{\sigma^{2s}(j)})\ldots)))=\epsilon_{j}. \end{split}$$

Спедствие 4.2. Если $< A, \eta > -$ тернарная полугруппа, то элемент $\mathbf{\varepsilon} = (\varepsilon_1, ..., \varepsilon_k)$ является идемпотентом $\mathbf{\varepsilon} = (2s+1)$ -арном группоиде $< A^k, \eta_{s,\sigma,k} >$ тогда и только тогда, когда компоненты $\varepsilon_1, ..., \varepsilon_k$ удовлетворяют условиям

$$\begin{split} \eta(\epsilon_{1}\epsilon_{\sigma(1)}\epsilon_{\sigma^{2}(1)}\dots\epsilon_{\sigma^{2s}(1)}) &= \epsilon_{1}, \\ \dots & \\ \eta(\epsilon_{k}\epsilon_{\sigma(k)}\epsilon_{\sigma^{2}(k)}\dots\epsilon_{\sigma^{2s}(k)}) &= \epsilon_{k}. \end{split}$$

Спедствие 4.3. Если $< A, \eta > -$ тернарная полугруппа, подстановка $\sigma \in \mathbf{S}_k$ удовлетворяет условию $\sigma^{2s+1} = \sigma$, то элемент $\mathbf{\varepsilon} = (\varepsilon_1, ..., \varepsilon_k)$ является идемпотентом в (2s+1)-арной полугруппе $< A^k, \eta_{s,\sigma,k} >$ тогда и только тогда, когда компоненты $\varepsilon_1, ..., \varepsilon_k$ удовлетворяют условиям

$$\begin{split} \eta(\epsilon_1 \epsilon_{\sigma(1)} \epsilon_{\sigma^2(1)} & \dots \epsilon_{\sigma^{2s-1}(1)} \epsilon_1) = \epsilon_1, \\ & \dots \\ \eta(\epsilon_k \epsilon_{\sigma(k)} \epsilon_{\sigma^2(k)} & \dots \epsilon_{\sigma^{2s-1}(k)} \epsilon_k) = \epsilon_k. \end{split}$$

Спедствие 4.4. Если $< A, \eta > -$ тернарная группа, подстановка $\sigma \in \mathbf{S}_k$ удовлетворяет условию $\sigma^{2s+1} = \sigma$, то элемент $\boldsymbol{\varepsilon} = (\varepsilon_1, ..., \varepsilon_k)$ является идемпотентом в (2s+1)-арной группе $< A^k, \eta_{s,\sigma,k} >$ тогда и только тогда, когда компоненты $\varepsilon_1, ..., \varepsilon_k$ удовлетворяют равенствам из следствия 4.3.

Следствие 4.5. Если $< A, \eta > -$ тернарная группа, подстановка $\sigma \in \mathbf{S}_k$ удовлетворяет условию $\sigma^{2s+1} = \sigma$, то элемент $\boldsymbol{\varepsilon} = (\varepsilon_1, ..., \varepsilon_k)$ является идемпотентом в (2s+1)-арной группе $< A^k, \eta_{s,\sigma,k} >$ тогда и только тогда, последовательности

$$\epsilon_1\epsilon_{\sigma(1)}\,\epsilon_{\sigma^2(1)}\,\ldots\,\epsilon_{\sigma^{2s-1}(1)}\,,\,\ldots,\,\epsilon_k\epsilon_{\sigma(k)}\,\epsilon_{\sigma^2(k)}\,\ldots\,\epsilon_{\sigma^{2s-1}(k)}$$

являются нейтральными в $< A, \eta >$.

Спедствие 4.6. Если $< A, \, \eta > -$ тернарная группа, подстановка $\sigma \in \mathbf{S}_k$ удовлетворяет условию $\sigma^{2s+1} = \sigma$, то элемент $\boldsymbol{\varepsilon} = (\varepsilon_1, ..., \varepsilon_k)$ является идемпотентом в (2s+1)-арной группе $< A^k, \, \eta_{s,\,\sigma,\,k} >$ тогда и только тогда, последовательности

$$\varepsilon_{\sigma(1)} \ \varepsilon_{\sigma^2(1)} \dots \varepsilon_{\sigma^{2s-1}(1)} \varepsilon_1, \dots, \varepsilon_{\sigma(k)} \ \varepsilon_{\sigma^2(k)} \dots \varepsilon_{\sigma^{2s-1}(k)} \varepsilon_k$$
являются нейтральными $e < A, \eta >$.

Теореме 3.1 соответствует следующее

Следствие 4.7. Пусть < A, $\eta > -$ тернарная группа, $\mathbf{\epsilon} = (\epsilon_1, \dots, \epsilon_k) \in A^k$, $\sigma = \sigma_1 \dots \sigma_p -$ разложение в произведение независимых циклов, исключая циклы единичной длины, подстановки $\sigma \in \mathbf{S}_k$, удовлетворяющей условию $\sigma^{2s+1} = \sigma$. Тогда:

1) если элемент ε является идемпотентом ε (2s + 1)-арной группе < A^k , $\eta_{s,\,\sigma,\,k}$ >, то для каждой компоненты ε_m , индекс которой подстановка σ оставляет неподвижным, верно равенство

$$\eta(\underbrace{\varepsilon_m \dots \varepsilon_m}_{2s+1}) = \varepsilon_m,$$
(4.1)

а для каждого цикла σ_r (r=1, ..., p) верно равенство

$$\eta(\varepsilon_{i_r}\varepsilon_{\sigma(i_r)}\varepsilon_{\sigma^2(i_r)}\ldots\varepsilon_{\sigma^{2s-1}(i_r)}\varepsilon_{i_r})=\varepsilon_{i_r},\quad (4.2)$$

где i_r – любой символ, входящий в запись цикла σ_r ;

2) если для каждой компоненты ε_m , индекс которой подстановка σ оставляет неподвижным, верно равенство (4.1), а для каждого цикла σ_r (r=1,...,p) верно равенство (4.2), где i_r – некоторый символ, входящий в запись цикла σ_r , то элемент ε является идемпотентом в (2s + 1)-арной группе $< A^k$, $\eta_{s,\sigma,k} >$.

Следствию 3.6 соответствует следующее

Следствие 4.8. Если $< A, \eta > -$ тернарная группа, то

$$I(A^{2}, \eta_{s,(12),2}) =$$

$$= (\varepsilon_{1}, \varepsilon_{2}) \in A^{2} \mid \eta(\underbrace{\varepsilon_{1}\varepsilon_{2} \dots \varepsilon_{1}\varepsilon_{2}}_{s} \varepsilon_{1}) = \{\varepsilon_{1}\}.$$

ЛИТЕРАТУРА

- 1. *Гальмак*, *А.М.* О разрешимости уравнений в $< A^k$, $\eta_{s,\,\sigma,\,k}>$ / А.М. Гальмак // Веснік МДУ імя А.А. Куляшова. 2018. № 1 (51). С. 4–10.
- 2. Гальмак, А.М. Многоместные операции на декартовых степенях / А.М. Гальмак. Минск: Издательский центр БГУ, 2009. 265 с.
- 3. *Post*, *E.L.* Polyadic groups / E.L. Post // Trans. Amer. Math. Soc. 1940. Vol. 48, № 2. P. 208–350.
- 4. *Русаков*, *С.А.* Алгебраические n-арные системы / С.А. Русаков. Мінск: Навука і тэхніка, 1992. 245 с.
- 5. Гальмак, А.М. *п*-Арные группы. Часть 1 / А.М. Гальмак. Гомель: ГГУ им. Ф. Скорины, 2003. 202 с.

Поступила в редакцию 14.04.2022.

Информация об авторах

Гальмак Александр Михайлович – д.ф.-м.н., профессор