УДК 517.538.52+517.538.53

DOI: https://doi.org/10.54341/20778708 2022 1 50 89

ПОЛИОРТОГОНАЛЬНЫЕ СИСТЕМЫ ФУНКЦИЙ

А.П. Старовойтов

Гомельский государственный университет имени Франциска Скорины

POLYORTHOGONAL SYSTEMS OF FUNCTIONS

A.P. Starovoitov

Francisk Skorina Gomel State University

Аннотация. В статье введены в рассмотрение кратные аналоги определителей и матриц Грама, изучается возможность построения полиортогональных систем функций с помощью процесса полиортогонализации произвольной конечной подсистемы линейно независимой системы функций $\varphi = \{\varphi_0(x), \varphi_1(x), ..., \varphi_n(x), ...\}$ в предгильбертовых функциональных пространствах, порождённых мерами $\mu_1, ..., \mu_k$. Доказанные утверждения являются обобщением теоремы Грамма – Шмидта об ортогонализации.

Ключевые слова: аппроксимации Паде́, полиортогональные многочлены, нормальный индекс, совершенная система, определители Грама.

Для цитирования: *Старовойтов, А.П.* Полиортогональные системы функций / А.П. Старовойтов // Проблемы физики, математики и техники. -2022. -№ 1 (50). - C. 89-93. - DOI: https://doi.org/10.54341/20778708_2022_1_50_89

Abstract. This article introduces multiple analogs of determinants and Gram matrices, studies the possibility of constructing polyorthogonal systems of functions using the process of polyorthogonalization of an arbitrary finite subsystem of a linearly independent system of functions $\phi = \{\phi_0(x), \phi_1(x), ..., \phi_n(x), ...\}$ in Pre-Hilbert function spaces generated by measures $\mu_1, ..., \mu_k$. The proven statements are a generalization of the Gram – Schmidt orthogonalization theorem.

Keywords: Padé approximations, polyorthogonal polynomials, normal index, perfect system, Gram determinant.

For citation: Starovoitov, A.P. Polyorthogonal systems of functions / A.P. Starovoitov // Problems of Physics, Mathematics and Technics. – 2022. – № 1 (50). – P. 89–93. – DOI: https://doi.org/10.54341/20778708 2022_1_50_89 (in Russian)

Введение

В работах [1], [2] найдены явные детерминантные представления полиортогональных многочленов I и II типов, обобщающие классическую формулу Грама – Шмидта [3, гл. 4, § 1] для представления ортогонального многочлена, полученного в результате ортогонализации линейно независимой системы функций $\{1, x, ..., x^n\}$ в предгильбертовом пространстве, порожденном мерой μ [4]. Доказательство формулы Грама – Шмидта в случае произвольной линейно независимой системы функций

$$\varphi^n = \{\varphi_0(x), \varphi_1(x), ..., \varphi_n(x)\}\$$

(см., например, монографию [3, гл. 3, § 1]) существенно опирается на свойствах определителей и матриц, введенных в рассмотрение Й. Грамом [5]. В данной статье определены кратные аналоги определителей и матриц Грама и изучается возможность построения полиортогональных систем функций с помощью процесса полиортогонализации произвольной конечной подсистемы линейно независимой системы функций

$$\varphi = \{\varphi_0(x), \varphi_1(x), ..., \varphi_n(x), ...\}$$

в предгильбертовых функциональных пространствах, порождённых мерами $\mu_1,...,\mu_k$.

Выбор функциональных пространств объясняется лишь желанием приблизить формулировки утверждений к классическим. На самом деле, все основные результаты статьи справедливы и в случае, когда предгильбертовы пространства задаются произвольными скалярными произведениями.

1 Полиортогональные функции

Будем придерживаться терминалогии монографии [6]. Пусть $\mu_1,...,\mu_k$ — положительные борелевские меры на вещественной прямой, носителями которых являются отрезки $\Delta_1,...,\Delta_k$. Рассмотрим систему функций

$$\varphi = \{\varphi_0(x), \varphi_1(x), ..., \varphi_n(x), ...\},\$$

каждая из которых измерима на отрезке Δ_j относительно меры μ_j при всех j=1,...,k. Будем считать, что система ϕ линейно независима на каждом из отрезков Δ_j и

$$\int_{\Delta_j} |\varphi_p(x)|^2 d\mu_j(x) < +\infty, j = 1, ..., k; p = 0, 1, (1.1)$$

Если выполняются условия (1.1), то кратко будем писать, что $\varphi \in L^2_{\mathfrak{u}}, \ \mu = \{\mu_1,...,\mu_k\}.$ Скалярное

© Старовойтов А.П., 2022

произведение функций f(x) и g(x) в предгильбертовом пространстве, порожденном мерой μ_j , обозначим через

$$(f,g)^{j} = \int_{\Delta_{i}} f(x)g(x)d\mu_{j}(x).$$

Везде в дальнейшем предполагаем, что $\varphi \in L^2_\mu$. Множество k-мерных мультииндексов (индексов) $n=(n_1,...,n_k)$, т. е. упорядоченных k целых неотрицательных чисел, обозначим через \mathbb{Z}_+^k . Порядок мультииндекса $n=(n_1,...,n_k)$ — это сумма $\mid n\mid:=n_1+...+n_k$.

Определение 1.1. Пусть $n = (n_1, ..., n_k) \in \mathbb{Z}_+^k$ — ненулевой мультииндекс. Тогда

$$\psi_n(x) = \alpha_0 \varphi_0(x) + ... + \alpha_{|n|} \varphi_{|n|}(x),$$

где $\alpha_j \in \mathbb{R}$ и $\alpha_0^2 + ... + \alpha_{|n|}^2 \neq 0$, будем называть n-ой полиортогональной функцией для набора мер μ , порожденной системой φ , если

$$\int_{\Delta_{j}} \Psi_{n}(x) \varphi_{p}(x) d\mu_{j}(x) = 0,$$

$$p = 0, 1, ..., n_{j} - 1; j = 1, ..., k.$$
(1.2)

Здесь предполагается, что $n_j \neq 0$. Если $n_{j_0} = 0$, то в (1.2) индекс j пробегает значения $\{1,...,j_0-1,j_0+1,...,k\}$, т. е. мера μ_{j_0} в определении полиортогональной функции $\psi_n(x)$ не учитывается.

В том случае, когда $\varphi = \{1, x, x^2, ...\}$, каждой мере μ_j можно поставить в соответствие марковскую функцию

$$f_{j}(z) = \int_{\Delta_{j}} \frac{d\mu_{j}(x)}{z - x}, z \in \overline{\mathbb{C}} \setminus \Delta_{j}, j = 1, ..., k \quad (1.3)$$

разложение которой в ряд Лорана в окрестности точки $z=\infty$ имеет вид

$$f_j(z) = \sum_{n=0}^{\infty} \frac{s_p^j}{z^{i+1}},$$

где

$$s_p^j = (x^{\alpha}, x^{\beta})^j = \int_{\Delta_j} x^p d\mu_j(x) (p = 0, 1, ...)$$

— последовательность степенных моментов меры μ_j (предполагается, что $\alpha, \beta \in \mathbb{Z}^1_+$, $\alpha + \beta = p$). При этом n-ая полиортогональная функция $\psi_n(x)$ является n-ым полиортогональным многочленом $Q(x) = Q_{|n|}(x)$ и соотношения ортогональности (1.2) примут вид

$$\int_{\Delta_j} Q(x) \cdot x^p d\mu_j(x) = 0, p = 0, 1, ..., n_j - 1; j = 1, 2, ..., k.$$

Если в определении 1.1 положить k=1 (либо, что тоже самое, индекс $n=(n_1,0,...,0)$), то отождествляя меру μ_1 с μ , а n_1 с $n\in\mathbb{Z}^1_+$, будем находится в классической ситуации, т. е. n-ая

полиортогональная функция $\psi_n(x)$ является n-ой ортогональной функцией и для неё имеет место формула Грама — Шмидта [3, гл. 3, § 1]

$$\psi_{n}(x) = \begin{vmatrix}
(\varphi_{0}, \varphi_{0}) & (\varphi_{1}, \varphi_{0}) & \dots & (\varphi_{n}, \varphi_{0}) \\
(\varphi_{0}, \varphi_{1}) & (\varphi_{1}, \varphi_{1}) & \dots & (\varphi_{n}, \varphi_{1}) \\
\dots & \dots & \dots & \dots \\
(\varphi_{0}, \varphi_{n-1}) & (\varphi_{1}, \varphi_{n-1}) & \dots & (\varphi_{n}, \varphi_{n-1}) \\
\varphi_{0}(x) & \varphi_{1}(x) & \dots & \varphi_{n}(x)
\end{vmatrix} . (1.4)$$

В представлении

$$\psi_n(x) = \alpha_0 \varphi_0(x) + \dots + \alpha_n \varphi_n(x),$$

которое легко получить из формулы (1.4), коэффициент α_n равен определителю Грама

$$G_{n} = \begin{pmatrix} (\phi_{0}, \phi_{0}) & (\phi_{1}, \phi_{0}) & \dots & (\phi_{n-1}, \phi_{0}) \\ (\phi_{0}, \phi_{1}) & (\phi_{1}, \phi_{1}) & \dots & (\phi_{n-1}, \phi_{1}) \\ \dots & \dots & \dots & \dots \\ (\phi_{0}, \phi_{n-1}) & (\phi_{1}, \phi_{n-1}) & \dots & (\phi_{n-1}, \phi_{n-1}) \end{pmatrix}$$
(1.5)

системы функций $\{\phi_0(x),\phi_1(x),...,\phi_{n-1}(x)\}$. Хорошо известно [3, гл. 3, § 1], что определитель Грама G_n системы $\{\phi_0(x),\phi_1(x),...,\phi_{n-1}(x)\}$ отличен от нуля тогда и только тогда, когда эта система линейно независима на отрезке Δ .

Полиортогональная функция условиями (1.2) определяется не однозначно, а с точностью до числового множителя. Эта неединственность может быть и более существенной. Приведём соответствующий пример.

Пример 1.1. Пусть k=2, n=(2,1), $d\mu_1(x)=dx$, $d\mu_2(x)=xdx$, где dx – мера Лебега, носитель которой $\Delta=[0,1]$. Тогда

$$\Psi_n(x) = ax^3 + bx^2 - \left(b + \frac{9a}{10}\right)x + \frac{a}{5} + \frac{b}{6}$$

где a и b – любые действительные числа не равные нулю одновременно.

Определение 1.2. Будем говорить, что n-я полиортогональная функция $\psi_n(x)$ однозначно определяется условиями (1.2), если для любых двух таких функций $\psi_n(x)$, $\psi_n^*(x)$ найдётся действительное число λ , что $\psi_n(x) \equiv \lambda \psi_n^*(x)$ на всех отрезках Δ_j .

Нашей ближайшей целью является нахождение необходимых и достаточных условий на индекс $n \in \mathbb{Z}_+^k$ и систему $\mu = \{\mu_1, ..., \mu_k\}$, при которых n-я полиортогональная функция определяется однозначно. В одномерном случае однозначность вытекает из линейной независимости системы ϕ . Пример 1.1 показывает, что уже при k=2 это не так. Далее будет установлено, что n-ая полиортогональная функция всегда существует, а её однозначность равносильна условию, при котором соответствующая кратная матрица Грама имеет максимальный ранг.

2 Критерий единственности. Теорема о полиортоганализации

Пусть $n \in \mathbb{Z}_+^k$ — ненулевой мультииндекс. Для каждого $n_j \neq 0$ определим матрицу порядка $n_j \times (\mid n \mid +1)$

$$F^{j} = \begin{vmatrix} (\varphi_{0}, \varphi_{0})^{j} & (\varphi_{1}, \varphi_{0})^{j} & \dots & (\varphi_{|n|}, \varphi_{0})^{j} \\ (\varphi_{0}, \varphi_{1})^{j} & (\varphi_{1}, \varphi_{1})^{j} & \dots & (\varphi_{|n|}, \varphi_{1})^{j} \\ \dots & \dots & \dots & \dots \\ (\varphi_{0}, \varphi_{n_{j}-1})^{j} & (\varphi_{1}, \varphi_{n_{j}-1})^{j} & \dots & (\varphi_{|n|}, \varphi_{n_{j}-1})^{j} \end{vmatrix},$$

а затем определим матрицу порядка $|n| \times (|n| + 1)$

$$F_n = \begin{bmatrix} F^1 & F^2 & \dots & F^k \end{bmatrix}^T := \begin{bmatrix} F^1 \\ \vdots \\ F^k \end{bmatrix}.$$

При $n_j=0$ матрица F_n не содержит блокматрицу F^j . Если, например, мультииндекс $n=(n_1,0,...,0)$, то матрица F_n состоит только из одного блока F^1 и является матрицей Грама: она состоит из элементов определителя (1.4), стоящих выше последней строки этого определителя.

Если к матрице F_n добавить в качестве последней строки строку

$$E(x) = (\varphi_0(x)\varphi_1(x)...\varphi_{|n|}(x)),$$

то получим квадратную матрицу. Определитель этой матрицы имеет вид

$$det \begin{bmatrix} F_{n} \\ E(x) \end{bmatrix} = \begin{bmatrix} (\phi_{0}, \phi_{0})^{1} & (\phi_{1}, \phi_{0})^{1} & \dots & (\phi_{|n|}, \phi_{0})^{1} \\ \dots & \dots & \dots & \dots \\ (\phi_{0}, \phi_{n_{1}-1})^{1} & (\phi_{1}, \phi_{n_{1}-1})^{1} & \dots & (\phi_{|n|}, \phi_{n_{1}-1})^{1} \\ \dots & \dots & \dots & \dots \\ (\phi_{0}, \phi_{0})^{k} & (\phi_{1}, \phi_{0})^{k} & \dots & (\phi_{|n|}, \phi_{0})^{k} \\ \dots & \dots & \dots & \dots \\ (\phi_{0}, \phi_{n_{k}-1})^{k} & (\phi_{1}, \phi_{n_{k}-1})^{k} & \dots & (\phi_{|n|}, \phi_{n_{k}-1})^{k} \\ \phi_{0}(x) & \phi_{1}(x) & \dots & \phi_{|n|}(x) \end{bmatrix}.$$

$$(2.1)$$

Определение 2.1. Индекс $n \in \mathbb{Z}_+^k$ будем называть слабо нормальным для μ , если ранг матрицы F_n максимальный, т.е. равен |n|.

В примере 1.1 индекс n=(2,1), а ${\rm rang} F_n=2$. Поэтому этот индекс не является слабо нормальным для рассматриваемых в этих примерах мер.

Определение 2.2. Систему мер $\mu = \{\mu_1, ..., \mu_k\}$ будем называть слабо совершенной, если все ненулевые индексы $n \in \mathbb{Z}_+^k$ являются слабо нормальными для μ .

Сформулируем и докажем основной результат. **Теорема 2.1.** Для того, чтобы для ненулево-го индекса $n \in \mathbb{Z}_+^k$ и системы мер $\mu = \{\mu_1,...,\mu_k\}$ n-ая полиортогональная функция $\psi_n(x)$ определялась условиями (1.2) однозначно, необходимо и достаточно, чтобы индекс n был слабо нормальным для μ , m. e. $\operatorname{rang} F_n = |n|$.

 $Ecnu \operatorname{rang} F_n = \mid n \mid$, то при определённом выборе нормирующего множителя п-ая полиортогональная функция представима в виде

$$\psi_n(x) = det \begin{bmatrix} F_n \\ E(x) \end{bmatrix}. \tag{2.2}$$

Доказательство. Пусть функция $\psi_n(x) = b_0 \varphi_0(x) + ... + b_{|n|} \varphi_{|n|}(x),$

где $b_0^2+...+b_{|n|}^2\neq 0$, удовлетворяет условиям (1.2). В силу того, что $\phi=\{\phi_0(x),\phi_1(x),...,\phi_n(x),...\}$ линейно независима на каждом из отрезков Δ_j , а коэффициенты $b_0,...,b_{|n|}$ все одновременно не равны нулю, функция $\psi_n(x)$ на каждом из отрезков Δ_j тождественно не равна нулю. Тогда условия (1.2) равносильны системе линейных уравнений для определения $b_0,...,b_{|n|}$, которая в матричной форме примет вид:

$$F_n \cdot b^T = \theta^T, \tag{2.3}$$

где $b = (b_0, b_1, \dots, b_{|n|})$ – матрица-строка, а

 θ — матрица-строка порядка $1\times(\mid n\mid +1)$, все элементы которой равны нулю. Поскольку система (2.3) является однородной и в ней число неизвестных на единицу больше числа уравнений, то, согласно теореме Кронекера — Капелли, она имеет ненулевое решение, а множество всех её линейно независимых решений состоит из одного фундаментального решения тогда и только тогда, когда $\operatorname{rang} F_n = \mid n\mid$. В этом случае все её ненулевые решения можно получить умножением фундаментального решения на число $\lambda \neq 0$. Первая часть теоремы 2.1 доказана.

Пусть теперь $\operatorname{rang} F_n = \mid n \mid$. Покажем, что в этом случае функция $\psi_n(x)$, определённая формулой (2.2), действительно является n-ой полиортогональной функцией. Разлагая определитель в (2.2) по элементам последней строки и, учитывая, что $\operatorname{rang} F_n = \mid n \mid$, легко заметить, что справедливо представление

$$\psi_n(x) = \alpha_0 \phi_0(x) + ... + \alpha_{|n|} \phi_{|n|}(x)$$
 и $\alpha_0^2 + ... + \alpha_{|n|}^2 \neq 0$.

Остаётся доказать, что эта функция $\psi_n(x)$ удовлетворяет условиям (1.2). Для этого, предположив, что $n_j \neq 0$, умножим последнюю строку определителя в (2.2) на $\phi_p(x)$ и применим оператор интегрирования $J_j f \coloneqq \int_{\Delta_j} f(x) d\mu_j(x)$ к последней строке полученного в результате домножения определителя. Таким образом приходим к равенству

$$\int_{\Delta_{j}} \Psi_{n}(x) \varphi_{p}(x) d\mu_{j}(x) =$$

$$\begin{vmatrix}
\dots & \dots & \dots & \dots \\
(\varphi_{0}, \varphi_{0})^{j} & (\varphi_{1}, \varphi_{0})^{j} & \dots & (\varphi_{|n|}, \varphi_{0})^{j} \\
(\varphi_{0}, \varphi_{1})^{j} & (\varphi_{1}, \varphi_{1})^{j} & \dots & (\varphi_{|n|}, \varphi_{1})^{j} \\
\dots & \dots & \dots & \dots \\
(\varphi_{0}, \varphi_{n_{j-1}})^{j} & (\varphi_{1}, \varphi_{n_{j-1}})^{j} & \dots & (\varphi_{|n|}, \varphi_{n_{j-1}})^{j} \\
\dots & \dots & \dots & \dots \\
(\varphi_{0}, \varphi_{p})^{j} & (\varphi_{1}, \varphi_{p})^{j} & \dots & (\varphi_{|n|}, \varphi_{p})^{j}
\end{vmatrix} . (2.4)$$

При $p=0,1,...,n_j-1$ определитель в (2.4) имеет две одинаковые строки. Поэтому он равен нулю. Следовательно условия (1.2) для функции $\psi_n(x)$ выполняются.

3 Замечания и следствия

В первую очередь отметим, что если индекс $n \in \mathbb{Z}_+^k$ не является слабо нормальным для μ , то функция, определённая равенством (2.3), не являются n-ой полиортогональной функцией для μ . Так, для набора $\mu = (\mu_1, \mu_2)$ из примера 1.1 при n = (2,1)

$$\psi_n(x) = ax^3 + bx^2 - \left(b + \frac{9a}{10}\right)x + \frac{a}{5} + \frac{b}{6},$$

однако, если эту функцию находить по формуле (2.3), то получим, что $\psi_n(x) \equiv 0$.

Из теоремы 2.1 легко получить

Спедствие. Полиортогональная функция $\psi_n(x)$ определяется однозначно для всех ненулевых мультииндексов $n \in \mathbb{Z}_+^k$ тогда и только тогда, когда система μ является слабо совершенной.

Заметим, что компонента n_j мультииндекса $n=(n_1,\ldots,n_k)$ определяет насколько значима мера μ_j в определении полиортогональной функции: чем больше n_j , тем больше условий в (1.2) с участием меры μ_j . Таким образом, число n_j количественно характеризует вклад меры μ_j в построение n-ой полиортогональной функции $\psi_n(x)$. В частности, если, например, $n=(n_1,0,\ldots,0)\in\mathbb{Z}_+^k$, то мы находимся в условиях теоремы Грама — Шмидта, и формула (2.2) в точности совпадает с классической формулой (1.4).

Рассмотрим мультиндексы $n \in \mathbb{Z}_+^k$, имеющие заданный порядок m. Число таких мультиндексов равно C_{m+k-1}^m . Поэтому при k>1 на множестве всех n-ых полиортогональных функций с фиксированным порядком индекса n нельзя ввести естественную нумерацию, как это имеет место, когда k=1.

Подробнее рассмотрим случай, когда $\phi = \{1, x, x^2, ...\}$. Тогда *n*-ая полиортогональная

функция $\psi_n(x)$ является n-ым полиортогональным многочленом $Q(x) = Q_{|n|}(x)$. Особый интерес представляет набор мер $\mu = \{\mu_1, ..., \mu_k\}$, при которых система $\mathbf{f} = \{f_1(x), ..., f_k(x)\}$, состоящая из функций Маркова (1.3), является совершенной.

Определение 3.1. Пусть $\phi = \{1, x, x^2, ...\}$. Индекс $n \in \mathbb{Z}_+^k$ называют нормальным для набора μ (для системы марковских функций \mathbf{f}), если для любого n-го полиортогонального многочлена $Q_{|m|}(x)$ имеем $\deg Q_{|m|} = |n|$.

Систему мер μ (систему марковских функций \mathbf{f}) называют совершенной, если все ненулевые индексы $n \in \mathbb{Z}_+^k$ являются нормальными для μ .

Отметим, что при $n \in \mathbb{Z}_+^1$ n-ый ортогональный многочлен Q(x) является знаменателем n-ой подходящей дроби (или, что тоже самое, n-ой аппроксимации Паде) так называемой чебышёвской непрерывной дроби марковской функции. Точно также при $n \in \mathbb{Z}_+^k$ n-ый полиортогональный многочлен $Q_{|n|}(x)$ можно определить (см., например, [6]) как общий знаменатель совместных аппроксимаций Паде для системы \mathbf{f} . Для некоторых известных совершенных систем \mathbf{f} полиортогональные многочлены хорошо изучены и нашли применение в различных областях алгебры, анализа, теоретической физики, в том числе, в рамках теории аппроксимаций Паде (см., например, [7]–[16]).

Доказано [6, с. 158], что n-ый полиортогональный многочлен $Q_{[n]}(x)$ имеет ровно n_j простых нулей внутри отрезка Δ_j , j=1,...,k. Поэтому, если отрезки $\{\Delta_j\}_{j=1}^k$ попарно не перекрываются (не имеют общих внутренних точек), то система \mathbf{f} , состоящая из марковских функций (1.3), совершенна.

Приведём пример несовершенной системы марковских функций, носители мер которых перекрываются.

Пример 3.1. Пусть
$$k=2, n=(1,1),$$

$$d\mu_1(x)=dx, \ \Delta_1=[0,1];$$

$$d\mu_2(x)=\frac{dx}{\sqrt{x(1-x)}}, \ \Delta_2=[0,1],$$

где dx — мера Лебега. Тогда при определённом выборе нормирующего множителя

$$Q_2(x) = \frac{1}{24}x - \frac{1}{48}.$$

Поскольку $\deg Q_2=1$, то индекс n=(1,1) не является нормальным, а соответствующая система $\mathbf{f}=\{f_1(x),f_1(x)\}$ марковских функций не является совершенной.

Как уже было сказано, система функций $\{\phi_0(x),\phi_1(x),...,\phi_{n-1}(x)\}$ линейно независима на отрезке ортогональности Δ тогда и только тогда, когда определитель Грама $G_n \neq 0$. Кратным аналогом определителя G_n является определитель

$$G_n^k = \begin{bmatrix} (\phi_0, \phi_0)^1 & (\phi_1, \phi_0)^1 & \cdots & (\phi_{|n|-1}, \phi_0)^1 \\ \cdots & \cdots & \cdots & \cdots \\ (\phi_0, \phi_{n_1-1})^1 & (\phi_1, \phi_{n_1-1})^1 & \cdots & (\phi_{|n|-1}, \phi_{n_1-1})^1 \\ \cdots & \cdots & \cdots & \cdots \\ (\phi_0, \phi_0)^k & (\phi_1, \phi_0)^k & \cdots & (\phi_{|n|-1}, \phi_0)^k \\ \cdots & \cdots & \cdots & \cdots \\ (\phi_0, \phi_{n_k-1})^k & (\phi_1, \phi_{n_k-1})^k & \cdots & (\phi_{|n|-1}, \phi_{n_k-1})^k \end{bmatrix}.$$

Очевидно, что $G_n^1 = G_n$. Можно показать, что если $\{\phi_0(x),\phi_1(x),...,\phi_{|n|-1}(x)\}$ линейна зависима на каждом из отрезков Δ_j , то $G_n^k = 0$. Обратное утверждение не верно. В подтверждение приведем пример.

Пример 3.2. Пусть k=2, $d\mu_1(x)=dx$, $\Delta_1=[0,1]$; $d\mu_2(x)=dx$, $\Delta_2=[-1,1]$, а $\phi=\{1,x,x^2,...\}$, где dx — мера Лебега. Тогда для мультиндексов n равных (1,2), (1,4), (1,6) определитель $G_n^2=0$.

В заключении сделаем ещё одно замечание. В [1] доказано, что индекс $n \in \mathbb{Z}_+^k$ является нормальным для системы марковских функций (1.3) тогда и только тогда, когда $G_n^k \neq 0$. Если $G_n^k \neq 0$, то $\operatorname{rang} F_n = |n|$. Поэтому любой нормальный индекс для системы \mathbf{f} марковских функций (1.3) является слабо нормальным для \mathbf{f} , а любая совершенная система \mathbf{f} является слабо совершенной.

ЛИТЕРАТУРА

- 1. Старовойтов, А.П. О явном виде полиортогональных многочленов / А.П. Старовойтов, Н.В. Рябченко // Известия вузов. Математика. 2021.- № 4.- C. 80–89.
- 2. Старовойтов, А.П. Аналоги формулы Шмидта для полиортогональных многочленов первого типа / А.П. Старовойтов, Н.В. Рябченко // Математические заметки. 2021. Т. $110, \, \text{N} \, \text{2}.$ С. 424-433.
- 3. *Натансон*, *И.П.* Конструктивная теория функций / И.П. Натансон. М.-Л.: ГИТТЛ, 1949.
- 4. *Schmidt*, *E*. Entwicklung willkürlicher Funktionen nach Systemen vorgeschriebener / E. Schmidt // Math. Ann. 1907. Vol. 63. P. 433–476.
- 5. Gram, I.P. Ueber die Entwicklung reeller Funktionen in Reihen mittels der Methode der kleinsten Quadrate / I.P. Gram // Journ. für Math. 1883. Vol. 94. P. 41–73.

- 6. *Никишин*, *Е.М.* Рациональные аппроксимации и ортогональность / Е.М. Никишин, В.Н. Сорокин. Москва: Наука, 1988.
- 7. Beukers, F. A note on the irrationality of $\zeta(1.2)$ and $\zeta(1.3)$ / F. Beukers // Bull. London Math. Soc. 1979. Vol. 11. P. 268–272.
- 8. *Сорокин*, *В.Н.* Аппроксимации Эрмита Паде для систем Никишина и иррациональность числа $\zeta(1.3)$ / В.Н. Сорокин // УМН. 1994. Т. 49, № 2. С. 167–168.
- 9. *Калягин*, В.А. Аппроксимации Эрмита Паде и спектральный анализ несимметричных операторов / В.А. Калягин // Матем. сб. 1994. Т. 185, № 6. С. 79—100.
- 10. *Aptekarev*, *A.I.* Higher-order three-term recurrences and asymptotics of multiple orthogonal polynomials / A.I. Aptekarev, V.A. Kalyagin, E.B. Saff // Constr. Approx. 2009. Vol. 30, № 2. P. 175–223.
- 11. Daems, E. Multiple orthogonal polynomials of mixed type and non-intersecting Brownian motions / E. Daems, A.B.J. Kuijlaars // J. Approx. Theory. -2007. Vol. 146, $Noldsymbol{Noldsymbol{Noldsymbol{O}} 1. P. 91-114$.
- 12. *Kuijlaars*, *A.B.J.* Singular values of products of Ginibre random matrices, multiple orthogonal polynomials and hard edge scalings / A.B.J. Kuijlaars, L. Zhang // Comm. Math. Phys. 2014. Vol. 332, № 2. P. 750–781.
- 13. *Mukhin*, *E*. Multiple orthogonal polynomials and a counterexample to the Gaudin Bethe Ansatz conjecture / E. Mukhin, A. Varchenko // Trans. Amer. Math. Soc. 2007. Vol. 359, № 11. P. 5383–5418.
- 14. *Суетин*, *С.П.* Полиномы Эрмита Паде и квадратичные аппроксимации Шафера для многозначных аналитических функций / С.П. Суетин // Успехи матем. наук. 2020. Т. 75, № 4 (454). С. 213—214.
- 15. *Икономов*, *H.P.* Алгоритм Висковатова для полиномов Эрмита Паде ряда / Н.Р. Икономов, С.П. Суетин // Матем. сб. 2021. Т. 212, № 9. С. 94—118.
- 16. Сорокин, В.Н. Аппроксимации Эрмита Паде функции Вейля и её производной для дискретных мер / В.Н. Сорокин // Матем. сб. 2020. Т. 211, № 10. С. 139—156.

Поступила в редакцию 17.12.2021.

Информация об авторах

Старовойтов Александр Павлович – д.ф.-м.н., профессор