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AHHoOTauus. ['o6anpHas TeopeMa KOPPEKTHOCTH 10 AJaMapy NepBOW CMEIIAHHOW 3aiavd JUIs HEOJHOPOJHOTO OOIIero
TenerpaHOro ypaBHEHHUsI CO BCEMH MEPEMEHHBIMU KOI((hHIHEHTAaMH B MOTYNONOCE IIOCKOCTH JTOKa3aHa HOBBIM METO/IOM
BCIIOMOTATENNBHBIX CMEIIAHHBIX 331a4. be3 SIBHBIX MPOJODKCHUH TaHHBIX CMEIIAHHOW 3a/laudl 3a Hpelelibl MHOXKECTBA UX
3aj[aHusl BBIBEICHBI PEKYppPEeHTHbIC (OpMyJbl THIAa PUMaHa €JUHCTBEHHOTO W YCTOMYMBOTO KJIACCHYECKOTO PEIICHHUS JUIs
NepBOM CMEIIAHHOW 3aJayM Ha OTpe3Ke. DTa MOJYNoJoca IUIOCKOCTH pasfiejieHa KPUBOJIMHEHHBIMU XapaKTepUCTHKAMH
Tenerpa)Horo ypaBHEHHUS! Ha NMPSIMOYTOJBHUKMA OJIMHAKOBOM BBICOTBI, 8 KaXKAbId NMPSIMOYTOJBHHK — Ha TPU TPEYTOJIbHHKA.
Kputeprii KOPpPEKTHOCTH COCTOMT M3 TpeOOBaHHMM TJIaJKOCTH W YCJIOBHW COIJIACOBAaHHMS Ha MpaBbIe YacTH YPaBHCHHUS,
HayaJlbHbIX U TPAaHMYHBIX YCJIIOBMH CMeLIaHHOH 3ajauu. TpeGoBaHUS INIAJKOCTH HEOOXOIMMBI M JOCTATOUHBI JUIS JIBAXK/Ibl
HenpepbIBHOW U] dEepeHIUPYyeMOCTH pelIeHHs B 3TUX TPEYroJIbHUKAX. YCJIOBHS COIVIACOBAaHUS BMeCTe C TPeOOBaHHUSAMHU
IJIAJIKOCTH  HEOOXOJMMBI ¥ JOCTATOYHBI ISl JIBaXIbl HEIPEPHIBHOW AUPQPEPSHIMPYEMOCTH PEIICHUS Ha HESIBHBIX
XapaKTEePHCTUKAX B 9TUX MPSMOYTOIBHUKAX.

KuiaroueBble coBa: obwee menespagnoe ypaghenue, HesA6Hble XAPAKMEPUCMUKU YPAGHEHUs, KpUMepuil KOppeKmHOCmu,
mpebosanue 21a0KOCMu, ycio8ue co2naco8aHusl.
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Abstract. The global theorem to Hadamard correctness to the first mixed problem for inhomogeneous general telegraph
equation with all variable coefficients in a half-strip of the plane is proved by a novel method of auxiliary mixed problems.
Without explicit continuations of the mixed problem data outside set of mixed task assignments the recurrent Riemann-type
formulas of a unique and stable classical solution for the first mixed problem on a segment are derived. This half-strip of the
plane is divided by the curvilinear characteristics of a telegraph equation into rectangles of the same height, and each rectangle
into three triangles. The correctness criterion consists of smoothness requirements and matching conditions on the right-hand
side of the equation, initial and boundary conditions of the mixed problem. The smoothness requirements are necessary and
sufficient for twice continuous differentiability of the solution in these triangles. The matching conditions together with these
smoothness requirements are necessary and sufficient for twice continuous differentiability of solution on the implicit
characteristics in these rectangles.
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matching condition.
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Introduction

In this work the global correctness theorem
(Theorem 2.1) to the first mixed problem for inho-
moge-neous general telegraph equation with all
variable coefficients in a half-strip of the plane is
proved by a novel method of auxiliary mixed prob-
lems [1] from Theorem 1.1. Without explicit con-
tinuations of the problem data outside a set of mixed
task assignments the recurrent Riemann-type formu-
las of a unique and stable classical (twice continuous
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differentiable) solution for the first mixed problem
on a segment are derived. The correctness criterion
for this mixed problem consists of smoothness re-
quirements and six matching conditions to mixed
problem data. Theorem 1.1 to the auxiliary first
mixed problem for inhomogeneous general telegraph
equation with all variable coefficients in the first
quarter of the plane was established by a modifica-
tion of the Riemann method. Note that for the first
time a different type formula for a solution was
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obtained and the existence of a unique and stable
classical solution of this auxiliary mixed problem
was shown by Schauder's method of continuation
with respect to parameter and the author's theorems
on increasing the smoothness of strong generalized
solutions in the work [2]. This article indicates nec-
essary and sufficient smoothness requirements for
the boundary and initial data, only sufficient
smoothness requirements for the right-hand side of
the equation and necessary and sufficient matching
conditions for the boundary and initial data and the
right-hand side of the equation. For this auxiliary
mixed problem, the necessary and sufficient
smoothness requirements on the right-hand side of
this general telegraph equation are found using the
correcting Goursat problem by the author's correc-
tion method, as for the model telegraph equation at
variable rate a(x,t) in [3].

For a concise and accurate assessment of the
results of scientific work, we introduced the concept
of global (and hence local) solvability theorems for
linear boundary value and initial boundary (mixed)
problems in works [briefly 4 and in detail 5]. The
global correctness theorem of the first mixed prob-
lem for a one-dimensional wave equation with con-
stant rate a(x,t) = a = const >0 in a half-strip of the

plane has also been proven in [4], [S]. For the first
time in this work, a critical analysis of the computa-
tion of explicit solutions of linear boundary value
problems by modern methods is made. The possibil-
ity of deriving global theorems by special non-
periodic continuations of the input data of these cor-
rectly posed boundary value problems is substanti-
ated. Global theorems are understood as theorems
with the weakest (necessary and sufficient) assump-
tions on the mixed problem data of these problems.

Definition [4], [S]. A solvability theorem of a
boundary value problem in a pair of locally convex
topological vector spaces is called global if its as-
sumptions are necessary and sufficient conditions
for the Hadamard correctness of this boundary value
problem.

The global correctness theorem for a boundary
value problem contains a criterion (necessary and
sufficient conditions) for its correctness (according
to Hadamard: existence, uniqueness and continuous
dependence of a solution on a problem data). There
is an infinite set of all possible extensions of the
problem data for each boundary value problem. In
fact, for each continuation method, we have our own
solution, our own sufficient conditions for correct-
ness and, thus, only a certain local correctness theo-
rem of the boundary value problem. Local correct-
ness theorems for the boundary value problem con-
tain only sufficient conditions for their correctness.
The non-continuation of the problem data of the
boundary value problem serves as a sign of the glob-
ality of the derived theorem of their correctness.
Nevertheless, using Zorn’s lemma, we have proved a
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theorem on the possibility of deriving global cor-
rectness theorems by special extensions of problem
data for linear boundary value problems.

Theorem [4], [5]. Each well-posed linear
boundary value problem for a partial differential
equation has a global theorem of its correct Ha-
damard solvability in the corresponding pair of lo-
cally convex topological vector spaces.

Our mixed problem (2.1)—(2.3) in theorem 2.1,
due to the rate a(x,t) dependent on x and ¢, does not

admit the use of the Fourier method (separation of
variables), the generalization of which is used to
solve all mixed problems in [6]-[14]. In them, solu-
tions of mixed problems for string vibration equation
(2.1) with coefficients a =1, b=c =0 and a poten-

tial ¢ =¢q(x) are sought by the Khromov method,

which is understood as a modification of the Fourier
method by using the resolvent method, the ideas of
AN. Krylov on the acceleration of the convergence
of Fourier series and L. Euler's ideas on divergent
series. Here the obtained Fourier series express gen-
eralized (almost classical, continuously differenti-
able) solutions of mixed problems that satisfy the
string vibration equations on a segment only almost
everywhere. These generalized solutions are obvi-
ously not classical solutions and their uniqueness is
not proved, but assumed. In this work only sufficient
correctness conditions for the right-hand side of
string vibration equation are shown.

1 An auxiliary first mixed problem for the
general telegraph equation with variable coeffi-
cients on the half-line

We have proved a global [4] correctness theo-

rem on G, =]0,+o0[x]0,+o0[ to the problem:
Lu=u,(x,t)—a’ (x,0)u_ (x,t)+b(x,)u,(x,t) +
+e(x, O, (x, 1) +q(x,)u(x,t) =

) (1.1)

= f(x,0),(x,t)eG,,
Ulo=0(x),u, | ,=w(x), x>0,  (1.2)
ul,_o=wi), >0, (1.3)

where the subscripts of the function « denote its quo-
tients derivatives of the corresponding orders with
respect to the indices indicated variables, a, >0,

a, >0 are real constants, coefficients and problem
data f,o,y,u — given functions of their variables x
and ¢.

Let C*(Q) be the set of k times continuously

differentiable functions on the subset Q — R* and
C'(Q) =C(Q).

Definition 1.1. The classical solution to the
mixed problem (1.1)—(1.3) on GOo is called the func-

tion u e C*(G,), which satisfies equation (1.1) in

the usual sense on G,, and the initial conditions
(1.2) and boundary regime (1.3) in the sense of the
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limits corresponding expressions from its values
u(x,f) in interior points (x,/)eG, for x— x,
{ — ¢t for all indicated boundary points (x, ?).

The characteristic equations

dx— (=1 a(x,t)dt =0

give the implicit characteristics g,(x,¢)=C,,i =1,2.
If a(x,t)=a, >0, then they decrease strictly in ¢ at
i =1 and increase at i =2 with increasing x. There-
fore, the functions y, = g;(x,#) have inverse func-
tions x =h {y,,t},t =h"[x,y,]. If ae C*(G,), then
the functions g;,/,h"” € C* to the variables x,,y,,
i=12 [2].

By the definition of inverse mappings, they sat-
isfy the following inversion identities from [2]:

g (hiy,,t5,0) =y, Yy,

_ (1.4)
hi{gi(x’t)at}:x,xzoﬂl:1323
(A X,y ]) =y, Yy,
_g,(x [x, v, D=y, (1.5)
hx, g, (x,0)]=1,120,i=12,
h{y., h[x,y.]} =x, x>0,
ARV v 1 (16)

hOlh Ay, t},y1=t,t>0,i=1,2.

The critical characteristic g,(x,?)=g,(0,0)
divides the first quarter plane G, =[0,+oo[x [0,+o0]
into two sets G ={(x,t)e G, :g,(x,t)>g,(0,0)}
and G, ={(x,1)eG,:g,(x,t)<g,(0,0)}. By a
modification of the Riemann method it has been
proved

Theorem 1.1 [2], [3], [15]. Let the coefficients
of the equation (1.1) be a(x,t)=a,>0,(x,t)eG,,
aeC*(G,), b,c,qeC'(G,)). The first mixed prob-
lem (1.1)~(1.3) in the set Gw has a unique and sta-
ble according to o,v, f,u classical solution
ueC*(G,),G, =[0,+0[x[0,+oc[, if and only if the

following smoothness requirements and matching
conditions are true :

@ e C*[0,+oo[, y € C'[0,+o0],

(1.7)
ue C*[0,+o, f € C(G,),

jf(| hig,(x,0),7} |,1)dte C'(G,),i=1,2, (1.8)

©(0) = p(0), y(0) = u'(0),
£(0,0)+a*(0,0)¢"(0) ~b(0,0)y(0)
—¢(0,0)¢'(0) - ¢(0,0)9(0) = u"(0).
The classical solution u e C*(G,) to the first mixed

problem (1.1)~(1.3) in G, is the function
2a(x1) ((auv)(h,{g,(x,1),0},0)+

+ (auv)(h {g,(x,1),0}, 0)) +

(1.9)

u_(x,t)=
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1 Iy {g (x,0),0}

[w(s)v(s,0)—
2a(X,1) ), 003

—@(5)v.(s,0)+b(s,0)p(s)v(s,0)]ds + (1.10)

t hinn
1

i 2a(x,t) -[dr -[

0 hy{gy (x,t),7}

((auv)(h {g,(x,1),0},0)~

f(s,D)v(s,t)ds,(x,t) e G_,

u, (1) = 2a(x,t)

—(auv)(h {g,(0,A”[0, g, (x,1)]),0},0)) +
1 Iy {g (x,0),0}
+

[y(s)v(s,0)—

2a(x,1) Iy {g (0,h)[0,g, (x,)]),0}

—(s)v,(s,0)+b(s,0)p(s)v(s,0)]ds + (1.11)
t h{g (x,1),7}

dr FUs v s | t)ds +p(e) -
2a(%,0) %5 by e tens

j. hl(!ﬁil(}t)ﬂ} _
- dr f(|s|,T)v(|s|,r)ds,(x,t)EG+,
200,07 15,0000

where the functions are
[0 =0+ [0~ £, @0,

Ju(x,0) = Lp(?), and [ is the restriction on the

+

set G, of the solution to the corresponding system
of the Volterra integral equation of the second kind
and the linear algebraic equation.
In G_ the Riemann function v(s, 1) = v(s, T; x,1)
is the solution to the Goursat problem:
V(5,0 = (@ (5,0v(s5,7),, = (b(s,V(s,7)), —
—(c(s,t)v(s,1)), +q(s,D)v(s,T) =0, (1.12)
(s,1) € AMPQ,

v(s,T) = exp {Ikl (hig,(x.0), p},p)dp},
g(s, 1) =g (x.0),

V(S,’C) = exp{jkz (hz {gz(x,t),p},p)dp}, (113)

&,(5,7) = g,(x,1), T€[0,7],
where the functions
k (s,7) ={a(s,1)b(s,t)+3a(s,t)a,(s,T) -
—a(s,1)+c(s, 1)}/ 4a(s,T)
on the curve QM and
k,(s,t) ={a(s,v)b(s,t)—3a(s,)a,(s,t)—
—a_(s,7)—c(s,7)}/4a(s, 1)
on the curve MP of the curvilinear characteristic
triangle AMPQ (see Figure 1.1).

In G, the Riemann function v(s,t) = V(s,T; x,7)
is the solution to the Goursat problem:
V. (5,0) = (@ (5, D)V(s, 1), = (B(s, DV(3, 7)), —
—(&(s,t)v(s,7)), +4(s,T)V(s,7) =0,

(1.14)
(s,7) € AMPQ,
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W(s,7) = exp{ [Rhig (x.0.p3, p)dp},
g(5,7) = & (x,0),

\;(S,T) = exp{jlzz(hz {gz(xat)s p}vp)dp}’ (1.15)

gz(S»T) = gz(x,t), te[0,1],

with functions 1;1 (s,7) on the curve QM and 122 (s,7)

on the curve MP, respectively equal to the functions
k (s,7) and k,(s,t), in which the coefficients a, b,

¢, q are respectively replaced by their even in x ex-
tensions a, b,c} and odd in x extension ¢ of the
coefficients a, b, c, g (see Figure 1.2).

T M(x,0)

O| Pl ig.(x.0,05.0) 00 1g,(x.1),04,0)

Figure 1.1 — Curvilinear characteristic triangle
aMPQ for the vertex M € G_.

T M(x,1)
'\
,&9
(II ; Al
4
x G
&
00,410, g, (x.0]) <
5
- W
o«
~ o
‘e
L g \- 5’
P(hy g, (x.1),0}.0) Pl(—h,{g,(x.0.03,0) OCh{g,(x,1,0},0)

Figure 1.2 — Curvilinear characteristic and critical
triangles AMPQ and aQ'PP’ respectively for the

vertex M €G,.

At each fixed point M (x,t) € G, the tangent of
the inclination angles of tangent lines to the curvi-
linear characteristics g,(x,?) =C,,i =1,2, differ only
in opposite signs dx/dt =(=1) a(x,1),i=1,2, (see
Figure 1.1, Figure 1.2). But since the extensions a,

b, §, f areevenand ¢ is odd along s relative to

Problems of Physics, Mathematics and Technics, Ne 1 (50), 2022

the axis Ot for any vertex M (0,¢),z >0, lying on
the axis Ort, curvilinear characteristic triangles
aMPQ and, in the particular, the triangles aQ'PP’

are “isosceles” (see Figure 1.2).
It is proved that the Goursat problems (1.12),
(1.13) and (1.14), (1.15) with coefficients a € C*(G,),

b,c,q € C'(G,) always have the only classical solu-
tions ve C* on G_ and G, . The formula (1.11) of
the classical solution u, to this problem on G, does

not contain the values of the extensions a,b,

5,(},/},];“,}(0) for x<0, as in formula (1.10),

therefore that these extensions turned out to be for-
mal due to the modulus sign |s| in the functions
f(| s|,t) u v(s|,t). Therefore, in the solution
(1.11), the first iterated integral, which is equal to
the double integral over the characteristic triangle
AMPQ, is actually taken over the curvilinear quad-

rangle MQ'P'Q and twice over the triangle aQ'OP’
of the critical triangle AQ'PP’ of the product

SUsl,ov( s, 0.

Corollary 1.1. If the continuous right-hand side
f € C[0,+0[ depends only on x or t, then the asser-
tion of this Theorem 1.1 is true without integral
smoothness requirements (1.8).

For a function f depending only on x or ¢ and
continuous in Q,, the integral requirements (1.8) in
Theorem 1.1 are automatically satisfied.

Corollary 1.2. Let the coefficients of the equation
(1.1) be a(x,t)y=a,>0,(x,t)eG,, aeC(G,),
b,c,q € C'(G,). If the right-hand side f depends on
x and t, then in the smoothness requirements (1.8) on
G, the belonging of integrals to a set C'(G,) are

equivalent to their belonging to sets C"(G,) or
C"(G,). Here C""(Q) (C"Y(Q)) is the set of

all continuous (continuously differentiable) with
respect to x and continuously differentiable (con-
tinuous) with respect to t functions on Q.

The proof of Corollary 1.2 is similar to its
proof in the case of constant coefficients
a(x,t)y=const >0, b=c=¢g=0 of the equation (1.1)
in chapter 2 of from the candidate dissertation [15].

Remark 1.1. It was first proved the existence of
a unique and stable classical solution to the mixed
problem (1.1)—(1.3) by the Schauder’s continuation
method with respect to a parameter and the author’s
theorems on increasing the smoothness of strong
solutions in the article [2].

2 The main first mixed problem for the gene-
ral telegraph equation with variable coefficients
on a segment

We need to decide and derive the correctness

criterion on Qn =]0,d[x]0,d,,,[ of the problem:
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Lu=u,(x,t)—a’ (x,t)u, (x,t)+b(x,t)u,(x,t)+
+c(x,0u, (x,0) +q(x, Du(x,t) =
= f(x.0.(x.1)€Q,,

Ul_o=0(x),u, |_,=v(x),0<x<d, (22)
u |x:0: Ml (t)> u |x:dz: l’l2 (t)9 0 <t< dn+1 > (23)

d =(n-)h?[d/2,g,0.0)]
Let us find in an explicit form the classical so-
lutions of this mixed problem and the criterion for its

Hadamard’s correctness.
Definition 2.1. The classical solution to the

mixed problem (2.1)—(2.3) on Qn is called the func-
tion u e C*(Q,), 0O, =[0,d]x[0,d

fies equation (2.1) in the usual sense on Qn, and the

@.1)

], which satis-

n+l

initial conditions (2.2) and boundary regimes (2.3) in
the sense of the limits corresponding expressions
from its values u(%,f) in interior points (x,7)eQ,
for x — x, {—t for all indicated boundary points
(x, 7).

The statement of the mixed problem (2.1)—(2.3)
and the definition 2.1 of its classical solutions

ueC? (Q,) imply the obvious necessary smooth-
ness requirements
feC@,), 9eC?0,d],
Yy e Cl[oad]’ M By € Cz[o’dnﬂ]‘
To obtain the first four matching conditions the
boundary regimes (2.3) with initial conditions (2.2)
and equation (2.1) in equalities (2.3) and the first

derivative with respect to ¢ of these equalities, we set
t =0 and use the initial data

o(d,)=p,(0), y(d,) =p,(0),
d, =(p-1d, p=12.

To find two more matching conditions, we differen-
tiate equalities (2.3) twice in ¢, we calculate the val-
ues of the derivatives of solutions u for x=0,7=0

2.4)

2.5)

and x=d,t=0 using initial conditions (2.2) and
equation (2.1) and we obtain

f(d,.00+a*(d,.000"(d,)-b(d,.00(d,)-

—c(d,,00¢'(d,)—q(d,,00p(d,) = n,(0), (2.6)
p=12.

We denote by the number of strokes over functions
with one variable the corresponding orders of their
ordinary derivatives with respect to these variables.

A global correctness Theorem 2.1 to this first
mixed problem (2.1)—(2.3) is derived from Theorem
1.1 “by the method of auxiliary mixed problems for
a semi-bounded string (wave equation on a half-
line)” from [1]. In the limit at » — +o0, bounded rec-

tangles O, exhaust the half-strip G =[0,d]x[0,+o0[,

unbounded along the time variable 7. For global cor-
rectness Theorem 2.1, the half-strip G is divided into
rectangles G,=[0,d]x[d,.d, ], where

66

d =mn-)h?[d/2,2,0,0)], n=1,23,.., each of
which is divided by the critical characteristics
g,(x,t)=g,0,d), g(xt)=g,d), n=1273,..,
into triangles:

Ay, ={(x,1)eG:g,(x,1)2g,(0,d,),
g(x10)<gdd,) xel0,d],t€ld,.d,l},
Ay, ={(x,1)eG:g,(x,1)<g,(0d,),
xel0,d/2),teld, .d, 1},

A, ={(x,0)eG:g(x,1)2g(d,d,),
xeld/2,d],teld, . d, ]}, n=123,..

We have proved by a novel method of auxiliary

mixed problems the following global correctness
Theorem 2.1. Let the coefficients of the equa-

tion (2.1) be a(x,t)>a, >0,(x,t)eQ,, acC*(Q,),
b,c,q € C'(Q,). The first mixed problem (2.1)~2.3)
in the set Qn has a unique and stable according to
R TR ueC (0,
0, =[0,d]1x[0,d,,,1, if and only if the following
smoothness requirements are true (2.4),

[ £(hig (0,5 LtdTe C Ay, Uy, ), (2.7)
o i=1,.2,

classical  solution

ff(d—| d—h{g(x,1),t} \,‘c)dt eC Ay, UA3k), (2.8)
d‘ i=12,
for all indices k =1,_n,n =1,2,..., and the matching

conditions (2.5), (2.6).
The classical solution to the first mixed prob-

lem (2.1)—(2.3) in rectangle Qn is the function
2a(x.0) ((auv)(h2 {g,(x,0),d,},d, )+

+(auv)(h{g, (x,1),d, }.,d, )) +

1 Iy gy (x,0).d; }

Uy, (xX,1) =

+ [w, (s, d ) =@ (s)v,(s,d, )+
2a(X,1) ), (o, (v
+b(s,d, ), (s)v(s,d,))ds + (2.9)
t My ig (x,0),1}
+ f(S,T)V(S,'C)dS,(X,t) € A}](,zs

T
2a(x,t) 7

Iy {8 (x.0),7}

((auv)(hl g (x,0),d,},d,) -

Uy (x,0) = 2a(x.1)

—(auv)(h {g,(0.h'[0,g,(x.0).d, }.d,)) +

1 Iy {g (x,0).d; }
+

[, (s)v(s,d,) -
2a(x.1) Iy (g1 (0,12 [0,g, (x,0]).dy } (2.10)

= @ (). (5,d, ) +b(s,d, )@, (s)v(s,d,)]ds +
l 1 Iy {g (x.0),7}

+ Sills L ow( s | ods +p, (1) -

dt
2a(x,t) 5

hy{g, (x,0),t}
l Iy {g (0.0),7}

Jar |

di hy{g,(0.0).7}

_2a(0,t) fi(|S|,'C)V(|S|,'C)dS,(x,t)€A3k71,
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((auv)(h2 {g,(x,0),d, },d,)—

Uy (3:1) = 2a(x,t)

~(auv)(h, {g,(d,h"[d, g, (x,0]),d; }.d,)) +

1 Iy (s (d.hVd, g (x.0]).d; }

+ [, ()v(s,d,) -
2a(X,0) e o g @)
=@ (v (s,d,) +b(s,d, ), (s)v(s,d,)]ds +
1 t d—hy{g; (x,1),t} _
+ T L(d=]s|,Dv(d—|s]|,t)ds+
2a(60) 5 donigens
+, (1) —
| f deiig (00T
- dt Sold=]s],v(d—]s|,7)ds,
2a(0,1) Jk =iy 18, (0.0,7)

(x,0) €A,
for all indices k = I,_n, n=1,2,... Here the functions
u,,, are the restrictions of the solution u to the
problem (2.1)-(2.3) on triangles A, ,,1=0,1,2,
and recurrent initial data are equal
@, (%) = 0(x), v, (x) = y(x),

2.12
xe[0,d], ¢, (x)= Uspyja ( )

B
t=d,

V() =0, uy | xe[i(d12),(i+1)d /2],

t=d,
j=0Lk=2mn=12,..
The functions
f@n=fen+ 001, @),
£, (0= Ly, (),

fp(o)(x,t) and Riemann functions v(x,t) are the
restrictions on triangles A, , of the same functions
from Theorem 1.1.

Proof. Theorem 2.1 will be proved by the
method of mathematical induction over rectangles
Q,. At the first step of mathematical induction for
the mixed problem (2.1)-(2.3) on a rectangle
0, =G, we will verify the existence of a unique and
stable classical solution ueCz(Ql) of the form

(2.9)—(2.11) with correctness criterion (2.4)—(2.8) for
k=n=1. The restrictions of necessary and suffi-
cient conditions (1.7)~(1.9) and formulas (1.10),

(L1 at  @(x) =0, (x), w(x)=y,(x),xe[0,d],
n)=w, (), t<[0,d,], from Theorem 1.1 onto the
trapezoid A, UA,, respectively, coincide with the
correctness criterion (2.4)—(2.8) for k=n=1, p=1
and formulas (2,9), (2.10) from Theorem 2.1. In the
trapezoid A, UA,, the correctness criterion consists
of the smoothness requirements (2.4), (2.7) for
k=n=1 and matching conditions (2.5), (2.6) at
p=1

To find the classical solution and the correct-
ness criterion of the mixed problem consisting of the
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equation (2.1), initial conditions (2.2), and the sec-
ond boundary regime from (2.3) at x=d in the
trapezoid A, UA,, we reduce it by replacing
x=d-%, t=1 tothe equivalent mixed problem
i, (%,0)— @ (X,0)u (%,0) + b(X,0)i, (X,1) +
+ ¢(X, )i, (X,6) + (X, 0)i(X,t) =
= [(&%0,(%1) €A UA,,
i],0= B0, 0, | o= U(D), Fe[0,d], (2.14)
ulio=p,(1),1€[0,d,], (2.15)
relatively new function #(X,?7) =u(d —x,t) = u(x,t)

(2.13)

with new coefficients a(x,t) =a(d —Xx,t) = a(x,1),

b(%,1) =b(d - %,t) = b(x,1), S(X,t)=c(d-%,t)=

=c(x,t), q(x,t)=q(d—-Xx,t)=q(x,t) and problem

data f(%,0)=f(d=%0)= f(n0), §(F)=0(d-0)=

=o¢(x), y(x)=wy(d—-Xx)=wy(x). Here the trapezoid
A,UA, is formed by two triangles

A ={(xNeG, 1g(x.02g(0,0),
gZ(x3t) < gz (090)5 X e [Oyd]: te [Osdz]}s
A, ={(x)€G, g (x1)<g(0,0),xe[0,d/2],
tel0,d,},d, =(n-1)h"[d/2,g,(d,0)].

After this non-degenerate replacement x=d —X,

t=f the implicit functions

v, =g,(x,t)=C,,x,t 20, and their inverse func-

tions x=h{y,t},t>0, t=h"[x,],x>0,i=1,2,

become the functions:

=X =g(d-X1)=g(x1),x,t20,(2.16)

F=hi.ty=d {0,120, (2.17)

t=h"[%5,1=h"[d -%5]=h"[x, 5],

x>0,i=1,2.
For them, analogous inversion identities are de-

rived from the inversion identities (1.4)—(1.6) re-
spectively:

&(h 7,00 = 5,99, h g (20,0} = &,
$20,i=12,
g.& %3] =73, 5, i[5 8 (X.0] =1,
t20,i=12,
h{7, V15,5, = %, 52 0, RO {5,.6}.5,] =,
t>0,i=1,2.

According to Theorem 1.1, the unique and sta-
ble classical solution #(%,¢) to the mixed problem

characteristic

(2.18)

(2.13)~(2.15) in a triangle &] is given by the restric-
tion of the unique and stable classical solution
u_(x,t) to Al the form (1.10), in which the charac-

teristic functions g,,h,h" are replaced respectively
by functions g,,/,,hA® and vice versa, the coeffi-

cients a, b, ¢, g — by the coefficients d,l;, —¢,q and
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the lateral sides MP, QM — by the lateral sides
OM, MP of the characteristic triangles aMPQ and

AMPQ. The vertices of these characteristic triangles
are points M (%,1) = M(d —%,t) = M (x,1),
P(hy{8,(%,0),03,0) = P(d ~ 1, {g,(%,1),0},0) =
P(h,{g,(d - %,1),0},0) = P(h, {g, (x,1),0}, 0),
O(h {2,(%.1),03,0) = O(d ~ h {g,(%.1),0},0) =
O(h{g,(d - x,1),0},0) = O(h {g, (x,1),0},0).
The last changes of the sides of the triangles AMPQ
and AMPQ in the formula (1.10) mean the re-
placements of the functions &, and £, , respectively,

by the functions &, and &, in the Goursat problem

(1.12), (1.13).
As a result, from formula (1.10) at

() = ,(x), W)=y, (@),xe[0.d], for (F.0)e4,
we have the unique and stable classical solution

1 T
2&(m((amv)(fa{gl<x,r),0},0)+

Haam)(h, {2, (%,1),0},0)) +

1 Iy (& (£.0),04

u,(x,t) =

+

— [, (s)V(s,0) = @, (s)V, (5,0) +
2a(%,1) G 1z (5.0 ] ]

+b(s,0), (5)9(s,0)]ds + (2.19)
¢ h{gEnNT

—|dr F(s,7)0(s,1)ds, (%,0) € A,.
Za(x,t)-([ ﬁ.fgwj;.r),w 1

Here the Riemann function v(§,t)=V(s,T;X,7) is

+

classical solution on A, to the Goursat problem:

v, (5,0)— (@ (3,0)¥(5,7)); — (b(5,7)9(3, 1)), +
+(¢(5,0)v(s,1); + (5, T)v(s,1) =0,

. (2.20)
(5,7) e AMPQ,
P(3,1)= exp{ [Fa(hiig, <fc,r),p},p>dp},
&G, = & (%),
7(3,7) = exp{ j b (hy {8, (%.0), p},p)dp}, 221)

& (5,19 =8,(%1,1€[0,7],
where the functions are
ki (5,7) = {a(3,1)b(5,7)+3a(s, 1)a.(s,7) -
—a (§,t)—c(s,1)}/4a(s,v)
on the curve MP and
k2(3,7) = {a(5, 1)b(5, 1) - 3a(s, 1)a,(5,7) -
—a (5,7)+¢(8,1)}/4a(s,)
on the curve QM.
Since the derivative is a.(5,t) = —a,(s,1), then

after the inverse replacement X=d —x from the
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Goursat problem (2.20), (2.21) we arrive at the
Goursat problem:

V. (5,7) = (@’ (5,)v(s, 1), = (b(s,D)V(s,7)), —
—(c(s,T)v(s, 1)), +g(s,T)v(s,T) =0,

(2.22)
(s,7) € AMPOQ,
v(s,7) = exp{ [k tg, (6.0, p},p)dp},
25,7 = g,(x0),
V(S’ T) = exp{_!. kz (hz {gz (X, t)! p}’ p)dp} H (223)

&,(5,7) =g,(x,1), T€[0,7],
because
ki(5,7) = {a(s, )b(s,7) - 3a(s, t)a, (s,7) —
—a.(s,1)—c(s,1)}/ 4a(s,v) = k,(s,7)
on the curve MP and
k» (8,7) ={a(s,t)b(s,t)+3a(s,t)a,(s,T)—
—a (s,1)+c(s, 1)}/ 4a(s,t) =k (s,7)

on the curve OM in Goursat conditions (2.21). Here
we have used relations (2.16), (2.17) and

ki(5,7) = k.(d —5,7) = k.(s,7),
h{g,(3,70).p} = d —h{g,(s,7).p},
k(A& (%0.pb.0) =k, (d = 42,(2.0,p}.p) =
=k, (h{g,(%.0.p}.p) = k, (h{g,(x.0).p}.p)
i=1,2.

So, in the formula (2.19) we make a change of
variable X =d —x using the following equalities:

(@iv)(h{g,(%,1),0},0) =
= (auv)(d - h{g,(%,1),0},0) =
= (auv)(h{g;(X,1),0},0) =
= (auv)(h{g,(d - x,1),0},0) =
= (auv)(h;{g,;(x,1),0},0),
R80T =d —h (3, (50,7} =
=d—-h{g,(d-%1),1}= (2.25)
=d-h{g,(d—-x1t),1},i=12,
due to equalities (2.16), (2.17) and V(s,7)=

=wv(d —5,1) =v(s,T). By these substitution Xx=d—x

* (2.24)

and transformations (2.25) from the classical solu-
tion (2.19) we find the classical solution

1
2a(x,1) ((auv)(h{g,(x,1),0},0)+

+(auv)(h, {g,(x,1),05,0)) +

1 d=hy{g; (x,1),0}

i (x,t)=

+

[w,(d —s)V(d —5,0)—
2a(X,1) 4y 1430y l

-, (d-s)v (d-s,0)+ (2.26)
+b(d —5,0)¢,(d —s)v(d —s,0)]ds +
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1 t d—hy{g, (x.,1).1}
+

f(d—-s,t)v(d—s,1)ds =

d—h{g (x,t),T}
=u,(x,1),(x,t) €A,.
To substantiate the last equality in the two integrals
of expression (2.26), we changed the integration
variable v =d —s. In addition, we see that the Gour-
sat problem (2.22), (2.23) coincides with the Goursat
problem (1.12), (1.13).

Similar to the solution (2.19) from formula

(1L11) at @) =¢(x), y(x)=vy,(x),x<[0,d],
w(®) =, (1), t[0,d,], for (%,1) € A,, we have the
unique and stable classical solution

((@am)(h, {2, (%,1),04,0) -

2a(x.1) { dr

o
L=

—(aii)(h, {2, (0,0, & (%,01),0},0)) +

1 Iy (&, (%.0),0}

+ (W, (s)v(s,0) —

Iy {8, (0.iV10,g, (2.0)]),0} (2.27)
= 3, (5)7.(5,0) +b(s,0), (5)7(s, 0)]ds +

1 o inENT

2a(%,1)

r———[dv [ AUsLOR(srds+p,(0)-
2605 gcos
o hinOoT | _
———[dr £ Loi(ls |, ds, (%0 €A,
2a(0,1) '! e <Io,t>,r;

Here the Riemann function v(s,t)=7v(s,T;x,t) is

the classical solution to the Goursat problem of the
form (1.14), (1.15). Using functions (2.16)—(2.18),
we derive the following equalities:

(@iv)(h {g,0,h'"[0, &, (%,1)]),0},0) =
= (auv)(d — ,{g,(0,h"[0, g (%,0)]),0},0) =
= (auv)(h,{g,(0,2"[0,& ,(%,1)]),0},0) =
= (auv)(h {g,(d,h""[0,&,(%,1)]),0},0) =
= (auv)(h {g,(d.h""[d, & (%,1)]),0},0) =
= (auv)(h {g,(d.h"[d. g (x.1)]),0},0),
h{g,(0,2[0,g,(%,0)]),0} =
=d—h{g,(0,h"[0,g (%.0)]).0} =
=d—h{g,(d. k[0, (%,0]),0} =
=d—hig,(d,h"[d.g,(%.0)]),0} =
=d-h{g(d,h"'[d,g,(x,)]),0}, (2.28)
i#j,i,j=12.
In the solution (2.27) we apply the equalities (2.25),

(2.28) and after a return replacement X =d —x into
the triangle A; becomes a solution

1
2a(x.1) ((auv)(hy (g, (x,1),0},0)

~(auv)(h {g,(d,h"[d, g,(x,1)]),0},0)) +

U, (x,t) =
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1 d—hy{g,(x,1),0}
+ [w,(d—s)v(d —s5,0)—
2a06,0) 44, gy 1000 8,03
—@,(d-s)v.(d-s,0)+
+b(d —5,0)0,(d —s)v(d —s,0)]ds +
1 t d=hy{g, (x,t),t} _
+— far | Ald=|s,ovd-|s|,v)ds+
a(%00 o g
+1,(0) -
1 j d=hy{g; (0.7}
- dt fr(d=]s|,D)v(d—|s],t)ds.
20(0’ t) 0 d—h{g (0,0),7}

Here we carry out the reverse change of the integra-
tion variable p=d —s and obtain the solution

Uy (x,0) = ((auv)(h,{g,(x,1),0},0)—

2a(x,t)
~(auv)(h,{g,(d.h"[d, g (x.)]),0},0)) +

1 Iy g, (d, iV [d g (x,0)]),0}

+ [y, (p)v(p,0)—
2a(x%,1) 0 1
=, (P)v,(p,0) +b(p, 0)o, (P)v(p, 0)Jdp +
1 t d=hy{g, (x,t),t} _
+ dt fo(d=|s|,0)v(d—|s]|,t)ds+
2a(x,1)5 d—hy g (0,1}
+u, (1) —
| L dhis0om

_2a(0,t)J0. & fa(d=slo(d—]s|,)ds,

which coincides with the classical solution (2.11) at
k=n=1 in triangle A, from theorem 2.1. Thus, the

validity of Theorem 2.1 for mixed problem (2.1)—
(2.3) on arectangle Q, is justified.

d=Iy{g(0,0),7}

At the second step of mathematical induction,
we assume that indicated in Theorem 2.1 the cor-
rectness criterion of the problem (2.1)—~(2.3) and the
formulas (2.9)—(2.11) for a unique and stable classi-
cal solution on Q, are true and show that they are

true on the rectangle O, .
2.1)-23)in G

n+l

The mixed problem
for a function u(x,?) by a non-
degenerate change of variables x=3%, t=f+d, is
reduced for a function #(x,7)=u(x,f +d,) =u(x,t)
in én to an equivalent mixed problem:
0, (x,1) = a2 (x, )i, (,7) + B Cx, )i, (x,7) +
+0(x, )i, (x, 1)+ §(x,0)i(x,t) =
= [(x.0).(x.0)€G,,
;o= 9 (%), 8 =W, (x), x €[0,d], (2.30)
U= R (f), Ul _y=R, (f), S d,.d,.1, 231)
d =m-1)r?[d/2,g,0.0)],
with the coefficient
a(x,t)=a(x,i +d,) = a(x,t),
b(x,f) = b(x,7 +d,) = b(x,1),

(2.29)
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é(x,t) =c(x,t +d,) = c(x,t),
4(x,0) = q(x, +d,) = q(x,0),
the right-hand side f(x,7) = f(x,f +d,)= f(x,1) of
the equation and boundary data
LD =nGrd)=p,0), i=12.
After the non-degenerate replacement x =3,
t=1+d,, the characteristic functions y, = g,(x,?)
and their inverse functions x=#h{y,,t},t>0,
t=h"[x,y,], x>0, turn into functions:
3 =& (x0) =g (xi+d,) = g,(x,1),
x,t>0,i=1,2,
x=h{(Piy = h(Dai+dyy =30,
t>0,i=1,2,
{= fz(”[x,jz,.] =h"x,9,]1-d,,x>0,i=1,2. (2.34)

By the definition of inverse mappings, they sat-
isfy the following inversion identities:

éi(ﬁi{ﬁiaf}’f) :ji’vj}i’
hig.(x,0),f}=x,x>0,i=1,2,

(2.32)

(2.33)

& (. h"[x,5,]) = 5., V9,
hOlx, .(x,D)] =1, 20,i=1,2,
/’Al[{)’},.,/:l(i)[x,);i]} =x,x2>0,
ROTh A3, 8}, 9,1=1,120,i=1,2.

According to the hypothesis of mathematical
induction, from formula (2.9) in Theorem 2.1 at

k=n and initial data o, (x), v, (x),x<[0,d],

from the initial conditions (2.30)), in triangle 53%2
we find the unique and stable classical solution

(@i, {2, (x.1),d,}.d,) +

g2 (6,0) = 2a(x.7)

+ (@@id)(h g, (x.0).d, }.d,))+  (235)

1 Iy (g (x.i)d,}

+ [\V"H(S)\;(S,dn)—

2&(x,f)ﬁ (

{8y (x,0),d, }

— 0., ($)0,(5,d,) +b(s,d, )0, (s)0(s,d, )]ds +
P s

— Jd'c I j}(s,r)ﬁ(s,r)ds,(x,f)eAS,’_Z.
2a(x’t)d~ I & (x,0),7

Applying the functions (2.32) (2.33), we derive
the equalities

hiig,(x,0),d,} = h{g,(x,f +d,).d,} =
= h{g(x,t +d,),d, +d,} = hig,(x,0),d,,},
hig, (x,0), ) = h{g,(x,0 +d,), 7} =
= hl.{gi(x,f+d2),r+d2} =h{g(x,1),1+d,},i=12,
(aw)(v,d,)) = (auv)(v,d, +d,) = (auv)(v,d ),
b(v,d)=v(v,d, +d,)=v(v,d,.),
b(v,d,)=b(v,d, +d,)=b(v.d,.,),

+

70

i highn
j dt j F(s,71)0(s,T)ds =
dy gy (i)

1=d, hig (x,0),t+d, }

=J.d‘t

d, hy{gs (x,0),t+dy }

f(s,t+d,)v(s,t+d,)ds =

t Iy {gi (x.0),0}
- J' do
dy Iy {gy (x.0),0}
where we applied the change of the integration vari-
able p =1+d,. Hence we see that after the reverse

f(s,p)v(s,0)ds,  (2.36)

change 7 =¢—d,, solution (2.35) becomes solution
(2.9) for k =n+1 in the triangle 4, ,,.

According to the hypothesis of mathematical
induction in a similar way from formula (2.10) in
Theorem 2.1 at k=n and initial data ¢, (x),

v, (x), x €[0,d], from the initial conditions (2.30),

in triangle A,, , we find the unique and stable clas-
sical solution

iy, 4 (v, 7) = (@) (8, (x.0),d,}.d,) -

2a(x,1)
~(@id)(hy {8, (0,i7[0, 2,(x,D)]).d, }.d,) ) +
1 g (x,0).d,}
+ = = [Wn+l (S){;(S’dn)_
2a(x,t) 718 (05108, ).d, ) (2.37)

~ @, (). (5,d, ) +b(s,d,)9,.,(5)0(s,d, )]ds +
i s,

+t— [ dr L0 L0 s |, t)ds + b, (7) -
2a(x,t)[;[ ﬁz@z?l.x,r‘),wl 1

1 & 007 .

S s L0 s |, v)ds, (x,7) €A, .
2a(0,7) J ib{ézz';)J)J}

Applying the functions (2.32)—(2.34), we come
to the equalities

h{8,(0,h10,¢,(x.D)]).d,} =
=h{8,0,h[0,g,(x.f +d,)]).d,} =
=h{2,(0.h[0,g,(x.0]—d,).d,} =
=h{g,(0,h[0,g,(x,0)]-d, +d,),d,} =
=h{g,(0,1[0.g,(x.0]).d, +d,} =
=h{g,(0,h[0,g,(x,0OD),d,, ,}, i # j, i, j=1,2,

f(sko=7F,(slt+d,), p=12,

v(Is|, ) =v(sl|,t+d,).
Owing to the equalities (2.36), (2.38), by changing
the variable 7 =¢—d,, the classical solution (2.37)

is transformed into the classical solution (2.10) for
k=n+1 in the triangle A, _,.

(2.38)

Just like above, from formula (2.11) in Theo-
rem 2.1 at k=n and initial data o,, (x), v, (%)

from the initial conditions (2.30) in triangle AM we
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find the unique and stable classical solution

i, (x,1) = (@), 12, (x.7),d,}.d,)~

24(x,1)
(@) (hy 12, (d,h"[d, & (v, D)), d, }.d,) ) +

hy (g (d.iVd & (x.D)).d, }

1 [V, (8)7(s,d,)

t—=
2a(x,t)

Iy {8, (x.0).d, }

— @, (). (5,d,) +b(s,d,)9,.,,(5)9(s,d, )]ds +
1 P d-hy{g(ni)T .

te———[dv [ fd-|s|0¥d-|s| s+
2a(x,t) dy d-h {8 ()T
+ plz (;) -
| j‘ d—irz{gj(ﬂf)ﬁ} ~
L fold=| s D= s|.v)ds,
2a(0,1) 3 a0
(x,0) e A3n. (2.39)

Using the functions (2.32)—(2.34), we find the
equalities

hig,(d,h"[d, &, (x.D]).d,} =
hig,(d,h[d. g, (x,i +d,)]).d,} =
h{g(d.h"[d.g,(x,0]~d,).d,} =
=hig,(d.h"[d,g,(x,0]-d, +d,).d,} =
= hig,(d,hV[d,g,(x,0]).d, +d,} =
=hig,(d, i [d,g,(x.0D.d,,},i % j,i, j=12.
i d=hy {8 (x,0)1}

[ar [ Fd=Isoi@-|s|,vds =

dy  d-h{g (xi)T

t-dy  d—hy{g,(x.0),t+dy}
= ‘[ dt

d, d—Iy{g (x,t),1+d,}

xv(d—|s|,t+d,)ds =

(0 d-hy g (0.8

=Jas |

duy d-hylg (x0.8)

where we have implemented the replacement of the
integration variable 8 =1+d,.

fold=|s|,t+d,)x

i (d—1s|,8)v(d—|s|,8)ds, (2.40)

Now it is easy to make sure with the help of
equalities (2.36), (2.38), (2.40), that by inverse re-

placement 7 =¢—d, the solution (2.39) becomes a
solution u,,,;(x,t) of the form (2.11) at k=n+1 in
the triangle A, ;.

So, the validity of formulas (2.9)—(2.11) in tri-
angles A,, ,, [1=0,1,2, k=1,n, of the classical

solution to the mixed problem (2.1)—(2.3) is substan-
tiated by the method of mathematical intuition. It
remains to prove a correctness criterion of this
mixed problem.

By the assumption of the method of mathe-
matical induction on the rectangle ( , the Ha-

damard correctness criterion for the mixed problem
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(2.1)+(2.3) on the rectangle é,, the following

smoothness requirements (2.4), (2.7), (2.8) at k=n
from theorem 2.1:

Qe CZ[O,d], ye Cl[O,d],

o . R . (2.41)
K |y € C [d,,ad,,HL f € C(Gn)9

—_—

Hlitgdgle)drec'@, Vb, o

.

n

i=1,2,
[ F(d=1d=hig (it ht)dre C'A,, , UA,,),
dn

i=1,2. (2.43)
These smoothness grants twice continuous differen-
tiability of the solution to the auxiliary mixed prob-
lem (2.29)~(2.31) in the triangles A, ,, A,,,, A,,.
Since after the inverse change 7 =¢—d, , the corre-
sponding transformations from (2.36), (2.38), (2.40)
to the smoothness requirements (2.41)—(2.43) be-
come the smoothness requirements (2.4), (2.7), (2.8)
at k=n+1 from Theorem 2.1, then these smooth-
ness requirements from Theorem 2.1 are equivalent
to twice continuous differentiability of the solution
to the mixed problem (2.1)—(2.3) in the triangles
A A,..,, A, .. In view of the assumption of
mathematical induction, the smoothness requirement
(2.41)—(2.43) together with the matching conditions
(2.5), (2.6) from Theorem 2.1 gives twice continu-
ous differentiability of a solution to the auxiliary
mixed problem (2.29)—(2.31) on the characteristics
& (x1)=8,00,d,), & (x0)=¢/(d,d,) of the

equation (2.29) in én. Thus, by the assumption of

3n+12

mathematical induction, a solution to the problem
(2.29)+2.31) is twice continuous differentiable on Gn.
Due to the fact that above the functions u,,,,,
U,.,, U,,, were derived by us from the functions
Uy, 5, U, ,, U, by the non-degenerate replacement
%=x, { =t—d, then, therefore, these functions u,,,,,
u,,.,, U, are twice continuous differentiable eve-
rywhere in G,,, and, in particular, on the characteris-
tics g,(x,1)=g,(0,d,,,), g(x1)=g(.d,,) of
the equation (2.1) in G,,,, since by construction the

recurrent initial data from (2.12) is ¢,,, (%),

v, (x) € C*[0,d]. Therefore, we still need to show
twice continuous differentiability of the solutions
ueC*(G,,,) and u e C*(Q,) on the common side

n+l
t=d, ,, oftheserectangles G, and Q,.

By construction, on the common side t=d,,,
of these rectangles, the equalities are true

u3n7j ('x’ dn+l) = (P)Hl (x) = u3n+l ('x’ dn+l )’
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Ot (x,1) Oty (551)
ot ot

for all xe[jd/2,(j+1)d /2], j=0,l, from recur-

rent initial data (2.12). Differentiating equalities

(2.44) once and twice with respect to x and ¢ using

the equation (2.1), we calculate the values of the
partial derivatives:

auSnfj (‘x’ dn+1 ) _

t=d, = Wnﬂ (x) = t=d,, (244)

au}nﬂ (x7 dnH)
b

=1 ! X)=
Ox @ (1) Ox
azu n— '(x’ dn+ ) " azu (x’d
3n—j - 1 — (Pn+l (x) — 3n+1 . n+1) ,
Ox ox
62143,,,/ (x,1) | —y' ()= o’us,,, (x,1) ‘
paey r=d,, = Yt oo t=d
’uy, (x,1)
E D = )0 ()0 ()~

= b(x,d, I, () = e(x,d, )P (X) =

- q(xs dn+] )(Pn+] (x) =
— azu3n+1('x7 t)

d o .od| .
61‘2 |td,7+|’xe|:.]5’(]+l)5i|a J :051'

Here, when deriving the last equality, we used all the
previous equalities. These equalities imply twice
continuous differentiability of functions (2.9)—(2.11)

for k=1,n and k =n+1 at the intersection ¢ = d,.,

of rectangles G,,, and Q,. Theorem 2.1 is proved.
Corollary 2.1. If the right-hand side f depends
only on x and is continuous in x, that is [ € C[0,d],
or depends only on t and is continuous in t, that is
fe€C[0,d,,,], then the assertion of this theorem 2.1

is true without integral smoothness requirements
(2.7), (2.8).

When the function f'depends only on x or # and
is continuous in Q,, then the integral requirements

(2.7), (2.8) in the theorem 2.1 are automatically sat-
isfied.
Corollary 2.2. Let the coefficients of the equa-

tion (2.1) be a(x,t)=a, >0,(x,t)eQ,, ac Cz(Qn),
b,e,q € C'(Q,). If the right-hand side f depends on

X and t, then in the smoothness requirements (2.7),
(2.8) the belonging of integrals to the sets, respec-

tively, C'(A,, ,UA,, ) and C'(A,, ,UA,,) are
equivalent to their belonging to sets, respectively,
C™ (A, UA, ) and  CV(A, ,UA,)  or

C" (A, UA,,_,) and C™ (A, ,UA,,), k=1n.
Here C""(Q) (C"(Q)) is the set of all continu-

ous (continuously differentiable) with respect to x
and continuously differentiable (continuous) with
respect to t functions on a set CQ.

Corollary 2.2 is proved in the same way as for
constant coefficients a(x,t)=const, b=c=q=0

in the candidate dissertation [16].
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Remark 2.1. The global theorem to the Ha-
damard correctness of the first mixed problem for
inhomogeneous model telegraph equation (2.1) with
variable coefficients

a(x,t) # const, b=—a,(x,t)/a(x,t),
c=-a(x,t)a (x,t), g=0
inarectangle O, is proved in author’s articles [2], [3].

Conclusion

The global Theorem 2.1 to Hadamard correct-
ness of the first mixed problem is proved for inho-
moge-neous general telegraph equation (2.1) with
variable coefficients in a rectangle O, which, in the
limit at »n—>+4o0o, exhausts a half-strip
G =[0,d]x[0,+oo[ . Without explicitly continuing
the problem data f,¢,y,u,,1, outside an assign-

ment set O, for the first mixed problem (2.1)—(2.3)

in O, explicit recurrent Riemann-type formulas
(2.9)~(2.11) of a unique and stable classical solution
ue C*(Q,) are derived by a novel method of auxil-

iary mixed problems. The correctness criterion is
established as inclusions (2.4)—(2.8). The smooth-
ness requirements (2.4), (2,7), (2.8) are necessary
and sufficient for twice continuous differentiability
of functions (2.9)«2.11) in triangles A

1=0,1,2, k=1n Six matching conditions (2.5),
(2.6) together with the smoothness requirements
(2.4), (2,7), (2.8) are necessary and sufficient for
twice continuous differentiability of the solution
(2.9)-(2.11) on characteristics g,(x,?) = g,(0,d,),

g,(x,0)=g,(d,d,), k=1,n, into Q,.

3k-1>
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