=ФИЗИКА-

УДК 539.3:621.373.8

DOI: https://doi.org/10.54341/20778708_2021_4_49_21

ОПТИМИЗАЦИЯ ПАРАМЕТРОВ ЛАЗЕРНОГО РАСКАЛЫВАНИЯ КВАРЦЕВОГО СТЕКЛА

Ю.В. Никитюк¹, А.Н. Сердюков¹, И.Ю. Аушев²

¹Гомельский государственный университет имени Франциска Скорины ²Университет гражданской защиты МЧС Республики Беларусь, Минск

OPTIMIZATION OF THE PARAMETERS OF LASER SPLITTING OF QUARTZ GLASS

Y.V. Nikitjuk¹, A.N. Serdyukov¹, I.Y. Aushev²

¹Francisk Skorina Gomel State University

²University of Civil Protection of the Ministry for Emergency Situations of the Republic of Belarus, Minsk

Аннотация. Выполнена оптимизация параметров лазерного раскалывания кварцевых пластин. Оптимизационные расчеты проводились с использованием генетического алгоритма MOGA, реализованного в программе ANSYS.

Ключевые слова: лазерное раскалывание, кварцевая пластина, генетический алгоритм MOGA, программная система конечно-элементного анализа ANSYS.

Для цитирования: Никитюк, Ю.В. Оптимизация параметров лазерного раскалывания кварцевого стекла / Ю.В. Никитюк, А.Н. Сердюков, И.Ю. Аушев // Проблемы физики, математики и техники. – 2021. – № 4 (49). – С. 21–28. – DOI: https://doi.org/10.54341/20778708_2021_4_49_21

Abstract. The parameters of laser splitting of quartz plates are optimized. Optimization calculations were carried out using the genetic algorithm MOGA, implemented in the ANSYS Workbench program.

Keywords: laser splitting, quartz plate, genetic algorithm MOGA, software system of finite element analysis ANSYS.

For citation: *Nikitjuk, Y.V.* Optimization of the parameters of laser splitting of quartz glass / Y.V. Nikitjuk, A.N. Serdyukov, I.Y. Aushev / Problems of Physics, Mathematics and Technics. – 2021. – № 4 (49). – P. 21–28. – DOI: https://doi.org/ 10.54341/20778708_2021_4_49_21 (in Russian)

Введение

Кварцевое стекло отличается высокой термостойкостью и прочностью, устойчиво к действию воды и кислот. Данный материал применяется при изготовлении окон фотоприемников, колб газоразрядных ламп и иллюминаторов космических кораблей. Из кварцевого стекла изготовляются призмы для монохроматоров и спектрофотометров, линзы для передачи ультрафиолетового излучения [1].

Для обработки кварцевого стекла применяется резка гидроабразивной струей, алмазным инструментом и лазерное излучение в режиме испарения материала. Недостатком этих методов является высокая дефектность формируемых кромок и снижение прочности получаемых изделий [2].

Лазерное раскалывание, сущность которого заключается в разделении материала в результате формирования индуцированной трещины при последовательном лазерном нагреве и воздействии хладагента на обрабатываемую поверхность, является одним из эффективных методов обработки хрупких неметаллических материалов. К основным достоинствам этого метода относятся высокие скорость и точность обработки, повышение прочности получаемых изделий [2]–[11]. Моделирование в рамках теории термоупругости и экспериментальные исследования лазерного раскалывания кварцевого стекла выполнены в работах [2], [8]–[12].

В работе [13] проведен анализ применения различных методов моделирования лазерной обработки материалов и представлены примеры оптимизации технологических параметров соответствующих процессов, в том числе с использованием генетических алгоритмов. Генетические алгоритмы являются частным случаем эволюционных методов, базирующихся на коллективном обучении внутри популяции и основанных на имитации естественного отбора. Генетические алгоритмы обеспечивают поиск лучших решений с помощью наследования и усиления полезных свойств множества объектов в процессе имитации их эволюции [14]–[15].

В работах [15]–[20] представлены результаты многокритериальной оптимизации параметров конструкций и технологических процессов в модуле DesignXplorer программы ANSYS Workbench. Многокритериальная оптимизация

[©] Никитюк Ю.В., Сердюков А.Н., Аушев И.Ю., 2021

это одновременная оптимизация двух и более целевых функций. Одним из методов решения таких задач является выявление совокупности оптимальных по Парето решений, которые не доминируют относительно друг друга, а улучшение одного параметра приводит к ухудшению других [15], [21]. При этом в работах [15]–[19] параметрическая оптимизация осуществлялась с использованием генетического алгоритма MOGA (Multi-Objective Genetic Algorithm), который в ряде публикаций называют алгоритмом FFGA (Fonseca and Fleming's Multiobjective Genetic Algorithm) [22], [23].

В связи с этим представляется целесообразным исследование лазерного раскалывания кварцевого стекла с использованием программы ANSYS при определении соответствующих тепловых и термоупругих полей и ее модуля DesignXplorer для решения соответствующих задач многокритериальной оптимизации.

1 Конечно-элементный анализ

Конечно-элементный расчет температурных полей и полей термоупругих напряжений проводился с использованием программы ANSYS. Моделирование выполнялось в рамках несвязанной задачи термоупругости в квазистатической постановке [24], [25]. Для этого была подготовлена соответствующая расчётная программа на языке программирования APDL (ANSYS parametric design language).

Моделирование было выполнено для пластины с геометрическими размерами 20×10×2 мм. На рисунке 1.1 приведена схема расположения лазерного пучка и хладагента. Для моделирования была сформирована конечно-элементная модель, состоящая из 56000 элементов и 61509 узлов (рисунок 1.2). Для теплового анализа применялись элементы Solid 70, для прочностного анализа применялись элементы Solid 185. При расчетах использовались свойства кварцевых стекол приведенные в таблице 1.1 [3], [26].

Свойства материала	Значения
Теплопроводность, Вт/ м •К	1,34
Удельная теплоемкость, Дж/кг·К	880
Плотность, $\kappa r/m^3$	2200
Модуль Юнга, ГПа	78
Коэффициент Пуассона	0,17
Коэффициент линейного	5
термического расширения, град-1·10 ⁻⁷	5

Таблица 1.1 – Свойства кварцевых стекол

Параметры, примененные при моделировании лазерного раскалывания кварцевого стекла:

– мощность лазерного излучения Р, 20 Вт;

- скорость резки V, 20 мм/с;

– радиус лазерного пучка *R*, 15 мм.

Рисунок 1.1 – Схема пространственного расположения зон воздействия лазерного излучения и хладагента:

- 1 лазерный пучок с длиной волны 10,6 мкм,
- 2 хладагент,
- 3 обрабатываемая пластина из кварцевого стекла,
- 4 сечение лазерного пучка 1 в плоскости обработки,
- 5 зона воздействия хладагента.

Рисунок 1.2 – Конечно-элементная модель

Полученные при моделировании распределения температурных полей и полей термоупругих напряжений представлены на рисунках 1.3, 1.4. На рисунке 1.4 видна характерная для лазерного раскалывания при использовании хладагента локализация термоупругих напряжений сжатия и растяжения в зоне обработки. При этом расчетные значения максимальных напряжений растяжения в зоне обработки σ_y и максимальные расчетные температуры в обрабатываемой пластине T равны соответственно 6,9 МПа и 993,7 К при выбранных расчетных параметрах обработки. Нужно отметить, что для реализации лазерного раскалывания кварцевого стекла

допустимы значения температуры не выше температуры стеклования, равной 1473 К для данного материала [3], [26]. При этом значения напряжений σ_y должны достигать как можно больших значений, так как в соответствии с критерием максимальных растягивающих напряжений для используемой схемы лазерного раскалывания пространственная локализация и величина напряжений σ_y определяют инициализацию и развитие лазерно-индуцированной трещины [27], [28].

Рисунок 1.3 – Распределение температуры в объеме обрабатываемой кварцевой пластины, *К* (*V* = 20 мм/с, *P* = 20 Вт, *R* = 1,5 мм)

Рисунок 1.4 – Распределение напряжений σ_y в объеме обрабатываемой кварцевой пластины, Па (V = 20 мм/c, P = 20 Вт, R = 1,5 мм)

2 Определение оптимальных параметров процесса лазерного раскалывания кварцевого стекла

Для оптимизации параметров лазерного раскалывания кварцевого стекла был использован модуль Ansys DesignXplorer, интегрированный в расчетную среду Ansys Workbench. Оптимизация была реализована в соответствии с последовательностью действий, представленных на рисунке 2.1 [16].

При моделировании был использован трехфакторный гранецентрированный вариант центрального композиционного плана эксперимента (ЦКП) [29], [30]. В качестве факторов эксперимента были выбраны скорость обработки V, мощность лазерного излучения P и радиус лазерного пучка R. При численных экспериментах

Problems of Physics, Mathematics and Technics, № 4 (49), 2021

определялись следующие выходные параметры: максимальная температура в зоне лазерной обработки T, максимальные напряжения растяжения в зоне обработки σ_y , глубина лазерноиндуцированной трещины L (таблица 2.1).

Рисунок 2.1 – Алгоритм оптимизации лазерного раскалывания кварцевого стекла

Глубина лазерно-индуцированной трещины L определялась с использованием программы, реализованной на APDL на основании данных о пространственной конфигурации термоупругих полей. При этом учитывалось, что рост трещины происходит в зоне напряжений растяжения, сформированных в результате воздействия хладагента на обрабатываемую поверхность, и прекращается в зоне напряжений сжатия [28]. Таким образом, параметр L, определяемый в результате моделирования, равен глубине расположения

границы растягивающих и сжимающих термоупругих напряжений под центром зоны воздействия хладагента, что можно интерпретировать как глубину лазерно-индуцированной трещины (изоповерхность $\sigma_v = 0$ на рисунке 1.4).

Таблица 2.1 – План эксперимента и результаты вычислений

N	P1	P2	P3	P4	P5	P6
IN	<i>V</i> , м/с	<i>P</i> , Вт	<i>R</i> , м	<i>L</i> , м	Т, К	$σ_y$, Πα
1	0,02	20	0,0015	0,0002	994	6854967
2	0,01	20	0,0015	0,0004	1260	11668376
3	0,03	20	0,0015	0,0001	868	4715231
4	0,02	10	0,0015	0,0002	643	3427482
5	0,02	30	0,0015	0,0002	1344	10282451
6	0,02	20	0,001	0,0002	1554	11122372
7	0,02	20	0,002	0,0003	756	4707558
8	0,01	10	0,001	0,0003	1154	9018635
9	0,03	10	0,001	0,0001	811	3905169
10	0,01	30	0,001	0,0003	2877	27055907
11	0,03	30	0,001	0,0001	1846	11715511
12	0,01	10	0,002	0,0004	615	4070154
13	0,03	10	0,002	0,0002	483	1611775
14	0,01	30	0,002	0,0004	1259	12210462
15	0,03	30	0,002	0,0002	862	4835328

Моделью объекта исследования являлись функции отклика, связывающие выходные параметры (L, T, σ_y) с факторами (V, P, R), которые менялись в заданных пределах при проведении численных экспериментов (таблица 2.1). Полученные уравнения регрессии имеют следующий вид:

 $L = 3,775 \cdot 10^{-4} - 0,011V + 34,13R^{2},$ $T = 1903 + 142,6P - 2,538 \cdot 10^{6} R + 7,992 \cdot 10^{8} R^{2} - -1637VP + 7,703 \cdot 10^{6} VR - 43370PR,$ $\sigma_{y} = -4,569 \cdot 10^{5} - 2,167 \cdot 10^{8} V + +1,538 \cdot 10^{6} P - 1,893 \cdot 10^{7} VP + +1,486 \cdot 10^{11} VR - 4,79 \cdot PR.$

Об адекватности полученных регрессионных уравнений свидетельствуют данные, приведенные на рисунке 2.2. На представленном графике по оси абсцисс отложены значения конечно-элементного моделирования, а по оси ординат – значения, полученные при помощи соответствующих регрессионных уравнений. Чем ближе полученные точки находятся к диагонали, тем выше точность регрессионной модели.

Значения коэффициентов детерминации для выходных параметров L, T, σ_y принимают значения, равные 0,94519, 0,97603, 0,95159 соответственно, что можно интерпретировать как наличие необходимого соответствия регрессионной модели данным конечно-элементного анализа [29]–[31].

Рисунок 2.2 – Проверка адекватности уравнений регрессии при вычислительном эксперименте P4 – L, P5 – T, P6 – σ_v

Для оценки чувствительности оптимизируемых параметров была построена диаграмма, отображающая влияние входных параметров на выходные параметры (рисунок 2.3). Глубина лазерно-индуцированной трещины в большей степени зависит от скорости обработки, на максимальную температуру в зоне лазерной обработки наибольшее воздействие оказывают мощность лазерного излучения и радиус лазерного пучка. На величину максимальных напряжений растяжения в зоне обработки приблизительно одинаково влияют все три фактора (V, P, R).

Рисунок 2.3 – Диаграмма чувствительности оптимизируемых параметров Р1 – V, Р2 – P, Р3 – R, Р4 – L, Р5 – T, Р6 – σ_v

На рисунках 2.4–2.6 представлены зависимости максимальной температуры в зоне лазерной обработки T, максимальных напряжений растяжения в зоне обработки σ_y и глубины лазерно-индуцированной трещины L от скорости обработки V, мощности лазерного излучения P и радиуса лазерного пучка R.

При проведении оптимизации процесса лазерного раскалывания кварцевого стекла

a)

1,5

использовался многокритериальный генетический алгоритм MOGA, встроенный в модуль DesignXplorer с числом индивидов начальной популяции равным 100, и числом индивидов за итерацию равным 100.

Рисунок 2.5 – Зависимость максимальной температуры T от параметров обработки a) R – const; δ) P – const; b) V – const

Оптимизация лазерного раскалывания кварцевого стекла осуществлялась для четырех вариантов постановки задачи:

1. По критерию максимума растягивающих напряжений $\sigma_y \rightarrow \max$ при задании значений

минимальной глубины трещины $L \ge 0,0001$ м и максимальной температуры в зоне обработки $T \le 1473$ K.

2. По критериям максимума растягивающих напряжений $\sigma_y \rightarrow \max$ и максимума скорости обработки $V \rightarrow \max$ при задании значений минимальной глубины трещины $L \ge 0,0001$ м и максимальной температуры в зоне обработки $T \le 1473$ К.

3. По критериям максимума растягивающих напряжений $\sigma_y \rightarrow \max$ и максимума глубины трещины $L \rightarrow \max$ при задании значений максимальной температуры в зоне обработки $T \le 1473$ K.

4. По критериям максимума растягивающих напряжений $\sigma_y \rightarrow \max$, максимума скорости обработки $V \rightarrow \max$ и максимума глубины трещины $L \rightarrow \max$ при задании значений максимальной температуры в зоне обработки $T \le 1473$ К.

Для каждого варианта оптимизации определялись по три лучших кандидата. Результаты оптимизации приведены в таблице 2.2.

Таблица 2.2 – Результаты оптимизации

Вариант	Ν	Р1 <i>V</i> , м/с	Р2 <i>Р</i> , Вт	Р3 <i>R</i> , м	Р4 <i>L</i> , м	Р5 <i>Т</i> , К	Р6 σ _y , Па
1	1	0,010	24,2	0,0015	0,00034	1473	14082363
	2	0,010	24,3	0,0015	0,00034	1467	14042311
	3	0,010	23,8	0,0015	0,00034	1471	14017589
2	1	0,030	28,1	0,0012	0,00011	1386	8727077
	2	0,030	26,4	0,0012	0,00011	1351	8419683
	3	0,030	16,8	0,0012	0,00010	971	5427482
3	1	0,010	28,9	0,0019	0,00040	1259	12110659
	2	0,010	28,1	0,0018	0,00038	1339	12994961
	3	0,010	23,0	0,0015	0,00034	1444	13695210
4	1	0,029	29,6	0,0018	0,00017	945	5531391
	2	0,028	25,9	0,0019	0,00020	838	4770144
	3	0,028	21,9	0,0020	0,00021	736	3952147

Из анализа данных, приведенных в таблице 2.3, видно, что лучшие кандидаты, определенные для каждого варианта оптимизации, имеют небольшие различия. Высокая термостойкость кварцевого стекла (коэффициент линейного термического расширения кварцевых стекол на порядок меньше, чем у большинства промышленных силикатных стекол [3], [26]) обуславливает невысокие значения напряжений σ_v , что ослож-

няет разделение этого материала методом лазерного раскалывания и делает наиболее перспективным для применения на практике набор технологических параметров первого варианта оптимизации.

Заключение

В работе с использованием центрального композиционного плана эксперимента получена регрессионная модель лазерной резки кварцевого стекла. Установлено наличие необходимого соответствия регрессионной модели результатам конечно-элементного моделирования. Выполнена оценка влияния параметров обработки на глубину лазерно-индуцированной трещины и на максимальные значения температуры и напряжений растяжения в кварцевых пластинах. Для четырех вариантов постановки задачи проведена оптимизация параметров лазерного раскалывания кварцевых пластин с использованием генетического алгоритма MOGA, встроенного в модуль DesignXplorer программы ANSYS Workbench. Определены наборы параметров обработки, реализация которых на практике обеспечит эффективную реализацию процесса резки кварцевых стекол методом лазерного раскалывания.

ЛИТЕРАТУРА

1. Арбузов, В.И. Основы радиационного оптического материаловедения. - Санкт-Петербург: СПб ГУ ИТМО, 2008. – 284 с.

2. Борисовский, В.Е. Развитие теории и разработка комплекса технологий и оборудования для лазерной обработки кварцевого стекла: автореф. дис. докт. техн. наук: 05.11.14 / В.Е. Борисовский; МГУПИ. – Москва, 2011. – 36 с.

3. Мачулка, Г. А. Лазерная обработка стекла / Г.А. Мачулка. – Москва: Сов. радио, 1979. – 136 с.

4. Способ резки неметаллических материалов: пат. 2024441 РФ, МКИ 5 С03В33/02 / В.С. Кондратенко; заявитель В.С. Кондратенко; заявл. 04.02.92; опубл. 12.15.94

5. Nisar, S. Laser glass cutting techniques -A review / S. Nisar // Journal of laser applications. -2013. – Vol. 25, № 4. – P. 042010-1–11.

6. Гиндин, П.Д. Разработка новых технологий и оборудования на основе метода лазерного управляемого термораскалывания для обработки деталей приборостроения, микро- и оптоэлектроники: автореф. дис. докт. техн. наук: 05.11.14 / П.Д. Гиндин; МГУПИ. – Москва, 2009. – 43 с.

7. Шалупаев, С.В. Термоупругие поля, формируемые в твердых телах световыми и звуковыми потоками: дис. ... канд. физ.-мат. наук: 01.04.05 / С.В. Шалупаев. – Минск, 1987. – 157 с.

8. Шершнев, Е.Б. Разработка и внедрение новых эффективных процессов в производство стеклоизделий с применением лазерной технологии: дис. ... канд. техн. наук: 05.17.11 / Е.Б. Шершнев. – Москва, 1990. – 145 с.

9. Никитюк, Ю.В. Физические закономерности лазерного термораскалывания силикатных стекол и алюмооксидной керамики: дис. ... канд. физ.-мат. наук: 01.04.21 / Ю.В. Никитюк. - Гомель, 2009. – 165 с.

Problems of Physics, Mathematics and Technics, № 4 (49), 2021

10. Shalupaev, S.V. Silica gel glasses after laser radiation / S.V. Shalupaev, A.V. Semchenko, Y.V. Nikitjuk // Material Science. - 2003. - Vol. 21, № 4. – P. 495–501.

11. Шершнев, Е.Б. Особенности лазерного раскалывания кварцевого стекла / Е.Б. Шершнев, Ю.В. Никитюк, С.И. Соколов // Проблемы физики, математики и техники. – 2013. – № 3 (16). – C. 39–44.

12. Инновационные технологии и оборудование субмикронной электроники / А.П. Достанко [и др.]; под ред. акад. НАН Беларуси А.П. Достанко. – Минск: Беларуская навука, 2020. - 260 c.

13. Parandoush, P. A review of modeling and simulation of laser beam machining / P. Parandoush, A. Hossain // International Journal of Machine Tools and Manufacture. - 2014. - № 85. - P. 135-145.

14. Емельянов, В.В. Теория и практика эволюционного моделирования / В.В. Емельянов, В.В. Курейчик, В.М. Курейчик. – Москва: ФИЗ-МАТЛИТ, 2003. – 432 с.

15. Красновская, С. В. Обзор возможностей оптимизационных алгоритмов при моделировании конструкций компрессорно-конденсаторных агрегатов методом конечных элементов / С.В. Красновская, В.В. Напрасников // Весці Нацыянальнай акадэміі навук Беларусі. Серыя фізіка-тэхнічных навук. – 2016. – № 2. – С. 92–98.

16. Multi-Objective Optimization of Microstructure of Gravure Cell Based on Response Surface Method / S. Wu, J. Xing, L. Dong, H. Zhu // Processes. – 2021. – № 9 (2). – P. 403

17. Grififths, J. Optimization of process parameters in laser transmission welding for food packaging applications / J. Grififths, C. Dowding // Procedia CIRP. - 2018. - Vol. 74. - P. 528-532. - DOI: https://doi.org/10.1016/j.procir.2018.08.130

18. Grebenişan, G. The multi-objective genetic algorithm optimization, of a superplastic forming process, using ansys / G. Grebenişan, N. Salem // MATEC Web of Conferences. – 2017. – № 126. – P. 03003.

19. Определение оптимизационных подходов при проектировании системы охлаждения газового термоэлектрического генераторного модуля / К.В. Кружаев, Д.П. Шматов, К.В. Зубарев, И.Г. Перевезенцев // Вестник Воронежского государственного технического университета. -2018. – T. 14, № 3. – C. 93–100.

20. Спицина, Е.Е. Идентификация холодопроизводительности и теплоотдачи ньютоновского теплоносителя в блоке термоэлектрического охлажления: лис. канл. техн. начк: 01.04.14 / Е.Е. Спицина. – Воронеж, 2019. – 138 с.

21. Steuer, R.E. Multiple Criteria Optimization: Theory, Computations, and Application / R.E. Steuer. -New York: John Wiley & Sons, Inc, 1986.

22. Fonsecay, C. Genetic algorithms for multiobjective optimization: Formulation discussion and generalization / C. Fonsecay, P. Flemingz //

In Proceedings of The 5th International Conference on Genetic Algorithms; Morgan Kaufmann Publishers. – Inc.: San Francisco, CA, USA, 1993. – P. 416– 423.

23. Грошев, С.В. Эффективность популяционных алгоритмов Парето-аппроксимации. Экспериментальное сравнение / С.В. Грошев, А.П. Карпенко, В.А. Мартынюк // Интернетжурнал «НАУКОВЕДЕНИЕ». – 2016. – Т. 8, № 4. – DOI: http://dx.doi.org/10.15862/67EVN416

24. Введение в ANSYS: прочностной и тепловой анализ: учебное пособие / А.С. Шалумов [и др.]. – Ковров: КГТА, 2002. – 52 с.

25. *Коваленко*, *Л.Д.* Основы термоупругости / Л.Д. Коваленко. – Киев: Наукова думка, 1970. – 307 с.

26. *Стекло /* А.А. Апен [и др.]; под общ. ред. Н.М. Павлушкина. – Москва: Стройиздат, 1973. – 487 с.

27. *Карзов*, *Г.П.* Физико-механическое моделирование процессов разрушения / Г.П. Карзов, Б.З. Марголин, В.А. Шевцова. – Санкт-Петербург: Политехника, 1993. – 391 с.

28. Левин, В.А. Избранные нелинейные задачи механики разрушения / В.А. Левин, Е.М. Морозов, Ю.Г. Матвиенко. – Москва: ФИЗ-МАТЛИТ, 2004. – 408 с. 29. Планирование и анализ результатов эксперимента: учебное пособие / А.П. Моргунов, И.В. Ревина; Минобрнауки России, ОмГТУ. – Омск: Изд-во ОмГТУ, 2014. – 343 с.

30. Адлер, Ю.П. Планирование эксперимента при поиске оптимальных условий / Ю.П. Адлер, Е.В. Маркова, Ю.В. Грановский. – Москва: Наука. – 1976. – 278 с.

31. Карпушкин, С.В. Теория инженерного эксперимента: учебное пособие для студентов дневного и заочного отделения, обучающихся по направлениям 15.04.01 «Машиностроение», 15.04.05 «Конструкторско-технологическое обеспечение машиностроительных производств» / С.В. Карпушкин, А.О. Глебов. – ФГБОУ ВО «Тамбовский государственный технический университет», Тамбов, 2017. – 81 с.

Поступила в редакцию 13.08.2021.

Информация об авторах

Никитюк Юрий Валерьевич – к.ф.-м.н., доцент Сердюков Анатолий Николаевич – чл.-корр. НАН Беларуси, д.ф.-м.н., профессор Аушев Игорь Юрьевич – к.т.н., доцент