УДК 512.542

О σ,-ДЛИНЕ КОНЕЧНОЙ σ-РАЗРЕШИМОЙ ГРУППЫ

Н.С. Косенок¹, В.М. Селькин²

 1 Белорусский торгово-экономический университет потребительской кооперации, Гомель 2 Гомельский государственный университет им. Ф. Скорины

ON THE σ_i -LENGTH OF A FINITE σ -SOLUBLE GROUP

N.S. Kosenok¹, V.M. Selkin²

¹Belarusian Trade and Economic University of Consumer Cooperatives, Gomel ²F. Scorina Gomel State University

Пусть $\sigma = \{\sigma_i \mid i \in I\}$ некоторое разбиение множества всех простых чисел $\mathbb P$ и G – конечная группа. G называется σ -разрешимой, если каждый главный фактор $H \mid K \mid G$ – это σ_i -группа для некоторого $i = i(H \mid K)$. Мы доказываем следующую теорему.

Теорема. (i) Если $G - \pi$ -отделимая группа, H - нильпотентная холлова π -подгруппа и $E - \pi$ -дополнение группы G со свойством EX = XE для некоторой подгруппы X в H такой, что $H' \le X \le \Phi(H)$, тогда $l_{\pi}(G) \le 1$.

- (ii) Если $G-\sigma$ -разрешимая группа и $\{H_1,\dots,H_t\}$ виландтов σ -базис группы G такой, что H_i перестановочна с H_j для всех i,j, тогда $l_{\sigma_i}(G) \le 1$ для всех i.
- (ііі) Если $G-\sigma$ -разрешимая группа и $\{H_1,...,H_t\}$ виландтов σ -базис группы G такой, что H_i перестановочна с $\Phi(H_i)$ для всех i,j, тогда $l_{\sigma}(G) \le 1$ для всех i.
- (iv) Если $l_{\pi}(G) \leq 1$, то QX = XQ для каждой характеристической подгруппы X группы H и любой силовской подгруппы Q в G такая, что HQ = QH.
- (v) Если $G-\sigma$ -разрешимая группа с $l_{\sigma_i}(G) \le 1$ для всех i и $\{H_1, ..., H_t\}$ является σ -базисом G, тогда каждая характеристическая подгруппа группы H_i перестановочна с каждой характеристической подгруппой группы H_i .

Ключевые слова: конечная группа, σ -разрешимая группа, π -разделимая группа, π -длина холловой подгруппы.

Let $\sigma = \{\sigma_i \mid i \in I\}$ be some partition of the set of all primes \mathbb{P} and G a finite group. G is said to be σ -soluble if every chief factor $H \mid K$ of G is a σ_i -group for some $i = i(H \mid K)$. We prove the following

Theorem. (i) If G is π -separable, H is a nilpotent Hall π -subgroup and E a π -complement of G such that EX = XE for some subgroup X of H such that $H' \le X \le \Phi(H)$, then $l_{\pi}(G) \le 1$.

- (ii) If G is σ -soluble and $\{H_1, ..., H_i\}$ is a Wielandt σ -basis of G such that H_i permutes with H_j for all i, j, then $l_{\sigma_i}(G) \le 1$ for all i.
- (iii) If G is σ -soluble and $\{H_1, ..., H_t\}$ is a Wielandt σ -basis of G such that of H_i permutes with $\Phi(H_j)$ for all i, j, then $l_{\sigma}(G) \le 1$ for all i.
- (iv) If $l_{\pi}(G) \le 1$, then QX = XQ each characteristic subgroup X of H and any Sylow subgroup Q of G such that HQ = QH.
- (v) If G is σ -soluble with $l_{\sigma_i}(G) \le 1$ for all i and $\{H_1, ..., H_i\}$ is a σ -basis of G, then each characteristic subgroup of H_i permutes with each characteristic subgroup of H_i .

Keywords: finite group, σ -soluble group, π -separable group, π -length, Hall subgroup.

1 The concepts and results

Throughout this paper, all groups are finite and G always denotes a finite group. Moreover, $\mathbb P$ is the set of all primes, $\pi = \{p_1, \dots, p_n\} \subseteq \mathbb P$ and $\pi' = \mathbb P \setminus \pi$. If n is an integer, the symbol $\pi(n)$ denotes the set of all primes dividing n; as usual, $\pi(G) = \pi(|G|)$, the set of all primes dividing the order of G.

In what follows, σ is some partition of \mathbb{P} , that is, $\sigma = \{\sigma_i \mid i \in I\}$, where $\mathbb{P} = \bigcup_{i \in I} \sigma_i$ and $\sigma_i \cap \sigma_j = \emptyset$ for all $i \neq j$.

A group G is said to be σ -soluble [1]-[3] if every chief factor H/K of G is a σ_i -group for some i = i(H/K). In particular, G is said to be

 π -separable if every chief factor of G is either a π -group or a π' -group.

A set \mathcal{H} of subgroups of G is said to be a complete Hall σ -set of G [1]–[3] if every member $\neq 1$ of \mathcal{H} is a Hall σ_i -subgroup of G for some $\sigma_i \in \sigma$ and \mathcal{H} contains exactly one Hall σ_i -subgroup of G for every $i \in I$ such that $\sigma_i \cap \pi(G) \neq \emptyset$.

Note that if G is σ -soluble, then G has a σ -basis [1], that is, a complete Hall σ -set $\{H_1,\ldots,H_t\}$ such that $H_iH_j=H_jH_i$ for all i,j. Finally, recall that a *Wielandt* σ -basis of G is a σ -basis $\mathcal H$ of G such that every member of $\mathcal H$ is nilpotent.

Every π -separable group G has a series

$$1 = P_0(G) \le M_0(G) < P_1(G) <$$

$$< M_1(G) < \cdots < P_t(G) \le M_t(G) = G$$

such that

$$\begin{split} M_i(G) \, / \, P_i(G) &= O_{\pi'}(G \, / \, P_i(G)) \quad (i = 0, 1, \dots, t) \\ \text{and} \ P_{i+1}(G) \, / \, M_i(G) &= O_{\pi}(G \, / \, M_i(G)) \quad (i = 1, \dots, t). \end{split}$$

The number t is called the π -length of G and denoted by $l_{\pi}(G)$ [4, p. 249].

In this note we prove the following

Theorem. (i) If G is π -separable, H is a nilpotent Hall π -subgroup and E a π -complement of G such that EX = XE for some subgroup X of H such that $H' \le X \le \Phi(H)$, then $l_{\pi}(G) \le 1$.

- (ii) If G is σ -soluble and $\{H_1, ..., H_t\}$ is a Wielandt σ -basis of G such that H_i permutes with $H_{i'}$ for all i, j, then $l_{\sigma_i}(G) \leq 1$ for all i.
- (iii) If G is σ -soluble and $\{H_1, ..., H_t\}$ is a Wielandt σ -basis of G such that of H_i permutes with $\Phi(H_i)$ for all i, j, then $l_{\sigma}(G) \leq 1$ for all i.
- (iv) If $l_{\pi}(G) \le 1$, then QX = XQ each characteristic subgroup X of H and any Sylow subgroup Q of G such that HQ = QH.
- (v) If G is σ -soluble with $l_{\sigma_i}(G) \le 1$ for all i and $\{H_1, ..., H_t\}$ is a σ -basis of G, then each characteristic subgroup of H_i permutes with each characteristic subgroup of H_i .

Corollary 1.1. Suppose that G is p-soluble, and let P be a Sylow p-subgroup and E a p-complement of G. If $E\Phi(P) = \Phi(P)E$, then $l_p(G) \le 1$.

Corollary 1.2. Suppose that G is p-soluble, and let P be a Sylow p-subgroup. Then $l_p(G) \le 1$ if and only if QP' = P'Q for each Sylow subgroup Q of G such that PQ = QP.

Corollary 1.3. Let G be soluble, and let P be a Sylow p-subgroup. Then $l_p(G) \le 1$ if and only if QP' = P'Q for each Sylow subgroup Q of G such that PQ = QP.

Corollary 1.4 (Huppert [5, VI, Satz 6.11]). Suppose that G is soluble, and let P_1, \ldots, P_t be a Sylow basis of G. Then the following hold:

- (i) If $P_i'P_j = P_jP_i'$ for all i, j, then $l_p(G) \le 1$ for all p;
- (ii) If $l_p(G) \le 1$ for all p, then every characteristic subgroup of P_i permutes with each characteristic subgroup of P_i .

2 Proof of the result

Let \mathfrak{M} and \mathfrak{H} be non-empty formations. Then the *Gaschütz product* $\mathfrak{M}^{\circ}\mathfrak{H}$ of these formations is the class of all groups G such that $G^{\mathfrak{H}} \in \mathfrak{M}$. It is well-known that such an operation on the set of all non-empty formations is associative (W. Gaschütz). The symbol \mathfrak{M}^{t} denotes the product of t copies of \mathfrak{M} .

We shall need the following well-known theorem of Gaschütz and Shemetkov [6, Corollary 7.13].

Lemma 2.1. The product of any two non-empty saturated formations is also a saturated formation.

Lemma 2.2. The class \mathcal{F} of all π -separable groups G with $l_{\pi}(G) \leq t$ is a saturated formation.

Proof. It is not difficult to show that for any non-empty set $\omega \subseteq \mathbb{P}$ the class \mathfrak{G}_{ω} of all ω -groups is a saturated formation and that $\mathfrak{F} = (\mathfrak{G}_{\pi'} {}^{\circ} \mathfrak{G}_{\pi})' {}^{\circ} \mathfrak{G}_{\pi'}$. Hence \mathfrak{F} is a saturated formation by Lemma 2.1. \square

Proof of Theorem. (i) Suppose that this is false. Then $H \neq 1$.

(1) For every minimal normal subgroup R of G we have $l_{\pi}(G/R) \le 1$.

Assume that this is false. Since G is π -separable, R is either a p'-group or a p-group. In the former case we have $H \simeq HR/R$, so

$$(HR/R)' = H'R/R$$

and $\Phi(H)R/R = \Phi(HR/R)$. Hence

$$(HR/R)' \leq XR/R \leq \Phi(HR/R),$$

where HR/R is a Hall π -subgroup of G/R. In the second case we have $R \le H$, so

$$H'R/R = (H/R)' \le$$

$$\leq XR/R \leq \Phi(H)R/R = \Phi(H/R).$$

Finally, ER/R is a π -complement of G/R and also we have

$$(ER/R)(XH/R) = EXH/R =$$

$$= XEH / R = (XR / R)(ER / R).$$

Therefore, the hypothesis holds for G/R and so we have (1) by the choice of G.

(2) R is the unique minimal normal subgroup of G and $R \nleq \Phi(G)$. Hence $C_G(R) \leq R \leq O_{\pi}(G) \leq H$.

The first assertion of (2) follows from Claim (1) and Lemma 2.2. Moreover, if R is a π' -group, then

$$l_{\pi}(G) = l_{\pi}(G/R) \leq 1.$$

Hence R is a π -group. Therefore, since $C_G(R)$ is normal in G, we have (2).

(3)
$$R \cap X$$
 is normal in G . Since $R \cap XE \le O_{\pi}(XE)$

by Claim (1), $R \cap XE = R \cap X$ is normal in XE. Hence $E \leq N_G(R \cap X)$. On the other hand, since $H' \leq X \leq H$ by hypothesis, X is normal in HP, so $R \cap X$ is normal in H. Therefore $R \cap X$ is normal in G = HE.

Final contradiction for (i). The minimality of R implies that either $R \cap X = 1$ or $R \cap X = R$. In the former case we have $X \leq C_G(R)$ since X is normal in H and so X = 1. But then H is abelian since by hypothesis we have $H' \leq X$. Therefore, since $C_G(R) \leq R \leq H$ by Claim (2), R = H is normal in G. But then $l_{\pi}(G) \leq 1$, which contradicts the choice of G. Therefore we have $R \leq X \leq \Phi(H)$ and so $R \leq \Phi(G)$, contrary Claim (2). This final contradiction completes the proof of Part (i).

(ii) Since $\{H_1,...,H_t\}$ is a Wielandt σ -basis of G, then H_i is nilpotent and

$$E = H_1 \cdots H_{i-1} H_{i+1} \cdots H_t$$

is a σ_i -complement of G. Moreover,

$$E\Phi(H_i) = \Phi(H_i)E$$

since $\Phi(H_i)H_j = H_j\Phi(H_i)$ for all j by hypothesis. Therefore $l_{\sigma_i}(G) \le 1$ for all i.

- (iii) See the proof of (ii).
- (iv) Suppose that this is false. Then $H \neq 1$ and Q is a q-group for some prime $q \notin \pi$. Suppose that HQ < G. Then $l_{\pi}(HQ) \le 1$ by Lemma 2.2, so QX = XQ by the choice of G. Hence G = HQ.

Suppose that $O_{\pi'}(G) \neq 1$ and let R be a minimal normal subgroup of G contained in $O_{\pi'}(G)$. Then $R \leq Q$ and $l_{\pi}(G/R) = l_{\pi}(G) \leq 1$. Therefore the choice of G implies that

$$QX / R = (Q / R)(XR / R) = (X / R)(Q / R) = XQ / R$$

and so QX = XQ, which contradicts the choice of G. Therefore $O_{\pi'}(G) = 1$ and hence H is normal in G since $I_{\pi}(G) \le 1$ by hypothesis. But then X is normal in G since it is characteristic in H. Hence QX = XQ. This contradiction completes the proof of Part (ii).

(v) Lemma 2.2 implies that

$$l_{\pi}(H_iH_i) \leq l_{\pi}(G) \leq 1$$
,

so in the case when $H_iH_j < G$, the choice of G implies that $V_iV_j = V_jV_i$. Therefore $H_iH_j = G$. Hence, by Part (iii), $V_iH_i = H_iV_i$ and $V_iH_i = H_iV_j$, so

$$V_i H_j \cap V_j H_i = V_i (H_j \cap V_j H_i) =$$

$$= V_i (H_i \cap H_i) V_i = V_i V_i = V_i V_i.$$

The theorem is proved.

REFERENCES

- 1. Skiba, A.N. A generalization of a Hall theorem / A.N. Skiba // J. Algebra and its Application. -2016. Vol. 15, N 5. P. 1650085. DOI: 10.1142/S0219498816500857.
- 2. *Skiba*, *A.N.* Some characterizations of finite σ -soluble $P\sigma T$ -groups / A.N. Skiba // J. Algebra. 2018. N 495. P. 114–129.
- 3. *Skiba*, *A.N.* On sublattices of the subgroup lattice defined by formation Fitting sets / A.N. Skiba // J. Algebra. 2020. № 550. P. 69–85.
- 4. *Robinson*, *D.J.S.* A Course in the Theory of Groups / D.J.S. Robinson. Springer-Verlag, New York-Heidelberg-Berlin, 1982.
- 5. *Huppert*, *B*. Endliche Gruppen I / B. Huppert. Springer-Verlag, Berlin, Heidelberg, New York, 1967.
- 6. *Shemetkov*, *L.A.* Formations of Algebraic Systems / L.A. Shemetkov, A.N. Skiba. Moscow: Nauka, 1989.
- 7. *Doerk*, *K*. Finite Soluble Groups / K. Doerk, T. Hawkes. Walter de Gruyter, Berlin New York, 1992.

Поступила в редакцию 11.11.2020.