УДК 512.548

О КОСЫХ ЭЛЕМЕНТАХ В ПОЛИАДИЧЕСКИХ ГРУППАХ СПЕЦИАЛЬНОГО ВИДА, ОПРЕДЕЛЯЕМЫХ ЦИКЛИЧЕСКОЙ ПОДСТАНОВКОЙ

А.М. Гальмак

Могилёвский государственный университет продовольствия

ON SKEW ELEMENTS IN POLYADIC GROUPS OF SPECIAL FORM DEFINED BY CYCLIC SUBSTITUTION

A.M. Gal'mak

Mogilev State University of Food Technologies

В статье продолжается начатое автором ранее изучение косых элементов в полиадических группах специального вида, определяемых циклической подстановкой, то есть в полиадических группах с l-арной операцией $\eta_{s,\,\sigma,\,k}$, которая называется полиадической операцией специального вида и определяется на декартовой степени A^k n-арной группы $< A,\,\eta > c$ помощью циклической подстановки $\sigma \in S_k$, удовлетворяющей условию $\sigma^l = \sigma$, и n-арной операции η . В качестве следствий получены результаты для полиадических групп специального вида с l-арной операцией $\eta_{s,\,\sigma,\,k}$, в которой σ — цикл длины k, делящей l-1, в частности, σ — цикл вида $(12\dots k)$.

Ключевые слова: полиадическая операция, п-арная группа, косой элемент, подстановка.

The article goes on with a study of skew elements in polyadic groups of special form defined by cyclic substitution, that is, in polyadic groups with l-ary operation $\eta_{s,\,\sigma,\,k}$ that is called polyadic operation of special form and is defined on Cartesian power A^k of n-ary group $< A, \, \eta >$ by cyclic substitution $\sigma \in S_k$ satisfying the condition $\sigma^l = \sigma$, and n-ary operation η . As corollaries the results for polyadic groups were obtained. These polyadic groups are of special form with l-ary operation $\eta_{s,\,\sigma,\,k}$ in which σ is a cycle such that its length devides l-1, in particular, σ may be cycle of the form (12 ... k).

Keywords: polyadic operation, n-ary group, skew element, substitution.

Введение

В статье продолжается изучение косых элементов в полиадической группе $< A^k, \eta_{s, \sigma, k} > c$ l-арной операцией специального вида. Существенным отличием данной работы от статьи автора [1], посвящённой той же тематике, является то, что в ней в определении l-арной операции $\eta_{s, \sigma, k}$ подстановка σ является циклической.

Полиадическая операция специального вида $\eta_{s,\,\sigma,\,k}$ была определена в [2] на k-ой декартовой степени A^k произвольного n-арного группоида $< A,\,\eta > c$ помощью n-арной операции η и подстановки σ из \mathbf{S}_k . Для n-арной группы $< A,\,\eta >$ операция $\eta_{s,\,\sigma,\,k}$ может быть определена следующим образом.

Пусть $< A, \eta > -n$ -арная группа, $n \ge 2, s \ge 1$, $l = s(n-1)+1, \ k \ge 2, \ \sigma \in \mathbf{S}_k$. Определим на A^k l-арную операцию

$$\eta_{s,\,\sigma,\,k}(\mathbf{x}_1\,\ldots\,\mathbf{x}_l) = \\ = \eta_{s,\,\sigma,\,k}((x_{11},\,\ldots,x_{1k})\,\ldots\,(x_{l1},\,\ldots,x_{lk})) = (y_1,\,\ldots,y_k),$$
 где $y_j = \eta(x_{1j}x_{2\sigma(j)}\,\ldots\,x_{(s(n-1)+1)\sigma^{s(n-1)}(j)}) = \\ = \eta(x_{1j}x_{2\sigma(j)}\,\ldots\,x_{l\sigma^{l-1}(j)}), j = 1,\,\ldots,k.$

Согласно следующей теореме, в случае тождественности подстановки σ^{l-1} свойство быть «полиадической группой» переносится с n-арной группы $< A, \, \eta >$ на l-арный группоид

 $< A^k, \eta_{s, \sigma, k} >$, который в этом случае называется полиадической группой специального вида.

Теорема 0.1 [3]. Если $< A, \eta > -$ п-арная группа, подстановка σ удовлетворяет условию $\sigma^l = \sigma, mo < A^k, \eta_{s, \sigma, k} > - l$ -арная группа.

Если η – бинарная операция, то l-арная операция $\eta_{s,\,\sigma,\,k}$, где l=s+1, совпадает с (s+1)-арной операцией $[\]_{s+1,\,\sigma,\,k}$, обозначаемой также символом $[\]_{l,\,\sigma,\,k}$, изучению которой посвящена книга [4]. В свою очередь, частными случаями l-арной операции $[\]_{l,\,\sigma,\,k}$, соответствующими циклу $\sigma=(12\ldots k)$, являются две полиадические операции Э. Поста [5], одну из которых он определил на декартовой степени симметрической группны, а вторую — на декартовой степени полной линейной группы над полем комплексных чисел.

1 Предварительные сведения

Определения и основные свойства n-арной группы, нейтральной и обратной последовательностей можно найти в книгах [6]–[8].

Напомним, что согласно В. Дёрнте [9], элемент b n-арной группы < A, $\eta >$ называется κo -сым элементом для элемента $a \in A$, если для любого i = 1, 2, ..., n верно

$$\eta(\underbrace{a\ldots a}_{i-1}b\underbrace{a\ldots a}_{n-i})=a.$$

Если b косой элемент для элемента a, то употребляют обозначение $b=\overline{a}$.

© Гальмак А.М., 2020

Замечание 1.1. Можно показать, что:

1) для того, чтобы элемент b n-арной группы < A, $\eta >$ являлся косым для $a \in A$, достаточно выполнения равенства из определения косого элемента только для некоторого i = 1, 2, ..., n;

2) если $n \ge 3$, то для любого элемента а парной группы < A, $\eta >$ его косой элемент \overline{a} является обратным для последовательности $\underline{a \dots a}$,

а последовательности \overline{a} $\underbrace{a \dots a}_{n-2}$ и $\underbrace{a \dots a}_{n-2}$ \overline{a} яв-

ляются нейтральными;

3) если $n \ge 3$, то для любого элемента а парной группы $< A, \eta > u$ любого i = 0, 1, ..., n-3 последовательность

$$\underbrace{a \dots a}_{i} \ \overline{a} \ \underbrace{a \dots a}_{n-i-3}$$

является обратной для a. B частности, обратными для a являются последовательности \overline{a} a ... a u a ... a \overline{a} ;

4) любой элемент а n-арной группы $< A, \eta >$ перестановочен со своим косым элементом \overline{a} .

Лемма 1.1. [7, предложение 1.2.20]. Пусть $\alpha_1, \ldots, \alpha_r$ — последовательности, составленные из элементов п-арной группы $< A, \eta >$, и пусть β_1, \ldots, β_r — последовательности, обратные соответственно данным. Тогда $\beta_r \ldots \beta_1$ — обратная последовательность для последовательности $\alpha_1 \ldots \alpha_r$.

Теорема 1.1. [1]. Пусть < A, $\eta > -$ *п-арная* группа $(n \ge 3)$, $\sigma -$ подстановка из \mathbf{S}_k порядка d, $\mathbf{a} = (a_1, ..., a_k) -$ произвольный элемент l-арной группы $< A^k$, $\eta_{s,\sigma,k} >$, l = td+1 для некоторого натурального t,

$$\alpha_j = a_{\sigma(j)} \dots a_{\sigma^{d-1}(j)}, j = 1, \dots, k,$$

 α_j^{-1} — любая обратная последовательность в $A, \eta > \partial$ ля последовательности α_j . Тогда элемент $\overline{\mathbf{a}} = (b_1, ..., b_k)$, где

$$b_{j} = \eta(\alpha_{j}^{-1} \overline{a_{j}} \underbrace{a_{j} \dots a_{j}}_{n-3} \alpha_{j}^{-1} \dots \overline{a_{j}} \underbrace{a_{j} \dots a_{j}}_{n-3} \alpha_{j}^{-1}),$$

является косым для а, то есть

$$\overline{\mathbf{a}} = (\eta(\alpha_1^{-1} \underline{a_1} \underline{a_1 \dots a_1} \underline{\alpha_1^{-1} \dots \overline{a_1}} \underline{a_1 \dots a_1} \underline{\alpha_1^{-1}}), \dots, \eta(\alpha_k^{-1} \underline{a_k} \underline{a_k \dots a_k} \underline{\alpha_k^{-1} \dots \overline{a_k}} \underline{a_k \dots a_k} \underline{\alpha_k^{-1}})).$$

2 Основные результаты

Прежде всего заметим, что лемма 1.1 позволяет получить следующую версию теоремы 1.1, в формулировке которой обратные последовательности явно не присутствуют. **Теорема 2.1.** Пусть < A, $\eta > -$ п-арная группа $(n \ge 3)$, $\sigma -$ подстановка из \mathbf{S}_k порядка d, $\mathbf{a} = (a_1, ..., a_k) -$ произвольный элемент l-арной группы $< A^k$, $\eta_{s,\sigma,k} >$, l = td+1 для некоторого натурального t,

$$\alpha_{jr} = \underbrace{a_{\sigma^{r}(j)} \dots a_{\sigma^{r}(j)}}_{n-3},$$

$$j = 1, \dots, k, r = 0, 1, \dots, d-1,$$

$$\beta_{j} = a_{\sigma^{d-1}(j)} \alpha_{j(d-1)} \dots a_{\sigma(j)} \alpha_{j1}.$$
(2.1)

Тогда элемент $\overline{\mathbf{a}} = (b_1, ..., b_k)$, где

$$b_{j} = \eta(\beta_{j} \underbrace{\overline{a_{j}} \alpha_{j_{0}} \beta_{j} \dots \overline{a_{j}} \alpha_{j_{0}} \beta_{j}}_{t-1}), \qquad (2.2)$$

является косым для а, то есть

$$\overline{\mathbf{a}} = (\eta(\beta_1 \underbrace{\overline{a_1} \alpha_{10} \beta_1 \dots \overline{a_1} \alpha_{10} \beta_1}_{t-1}), \dots, \eta(\beta_k \underbrace{\overline{a_k} \alpha_{k0} \beta_k \dots \overline{a_k} \alpha_{k0} \beta_k}_{t-1})).$$

Доказательство. По теореме 1.1 компонента b_j косого элемента $\overline{\bf a}=(b_1,...,b_k)$ может быть представлена в виде

$$b_{j} = \eta(\alpha_{j}^{-1} \underbrace{\overline{a_{j}} \underbrace{a_{j} \dots a_{j}}_{n-3} \alpha_{j}^{-1} \dots \overline{a_{j}} \underbrace{a_{j} \dots a_{j}}_{n-3} \alpha_{j}^{-1}}_{t-1}), (2.3)$$

где α_j^{-1} — любая обратная последовательность в $< A, \, \eta >$ для последовательности

$$\alpha_j = a_{\sigma(j)} \dots a_{\sigma^{d-1}(j)}, j = 1, \dots, k,$$

Согласно лемме 1.1, и в силу 3) замечания 1.1, в качестве α_i^{-1} можно взять последовательность

$$\alpha_{j}^{-1} = (a_{\sigma(j)} \dots a_{\sigma^{d-1}(j)})^{-1} = (a_{\sigma^{d-1}(j)})^{-1} \dots (a_{\sigma(j)})^{-1} =$$

$$= \overline{a_{\sigma^{d-1}(j)}} \underbrace{a_{\sigma^{d-1}(j)} \dots a_{\sigma^{d-1}(j)}}_{n-3} \dots \overline{a_{\sigma(j)}} \underbrace{a_{\sigma(j)} \dots a_{\sigma(j)}}_{n-3} =$$

$$= \overline{a_{\sigma^{d-1}(j)}} \alpha_{j(d-1)} \dots \overline{a_{\sigma(j)}} \alpha_{j1},$$

то есть

$$\alpha_i^{-1} = \beta_i, \tag{2.4}$$

где последовательности $\alpha_{j1}, \ldots, \alpha_{j(d-1)}$ в предпоследнем равенстве определяются формулой (2.1) для $r=1,\ldots,d-1$. В частности, если в (2.1) r=0, то, считая подстановку σ^0 тождественной, имеем $\alpha_{j0}=a_j\ldots a_j$. Тогда

$$\frac{\overline{a_j}}{a_j} \underbrace{a_j \dots a_j}_{n-3} = \overline{a_j} \alpha_{j0}, j = 1, \dots, k.$$
(2.5)

Подставляя (2.4) и (2.5) в (2.3), получим (2.2). \Box

Ассоциативность n-арной операции η позволяет переписать равенство (2.2) из теоремы 2.1 в виде

$$b_j = \eta(\underbrace{\beta_j \overline{a_j} \alpha_{j0} \dots \beta_j \overline{a_j} \alpha_{j0}}_{t-1} \beta_j).$$

Случай подстановки порядка, делящего n-1. Если порядок d подстановки σ делит n-1,

то есть n = pd + 1 для некоторого натурального p, то d делит l - 1, так как из l = s(n - 1) + 1 следует l = td + 1, где t = sp. Поэтому теорема 2.1 позволяет сформулировать следующую теорему.

Теорема 2.2. Пусть < A, $\eta > -$ n-арная групna $(n \ge 3)$, σ - nодстановка из \mathbf{S}_k порядка d, $\mathbf{a} = (a_1, ..., a_k)$ - произвольный элемент l-арной группы $< A^k$, $\eta_{s,\sigma,k} >$, n = pd + 1 для некоторого натурального p,

$$\alpha_{jr} = \underbrace{a_{\sigma^{r}(j)} \dots a_{\sigma^{r}(j)}}_{n-3}, j = 1, \dots, k, r = 0, 1, \dots, d-1,$$

$$\beta_{j} = \overline{a_{\sigma^{d-1}(j)}} \alpha_{j(d-1)} \dots \overline{a_{\sigma(j)}} \alpha_{j1}.$$

Тогда элемент $\overline{\mathbf{a}} = (b_1, ..., b_k)$, где

$$b_j = \eta(\beta_j \underbrace{\overline{a_j} \alpha_{j0} \beta_j \dots \overline{a_j} \alpha_{j0} \beta_j}_{sp-1}),$$

является косым для а, то есть

$$\overline{\mathbf{a}} = (\eta(\beta_1 \underbrace{\overline{a_1}\alpha_{10}\beta_1 \dots \overline{a_1}\alpha_{10}\beta_1}_{sp-1}), \dots, \eta(\beta_k \underbrace{\overline{a_k}\alpha_{k0}\beta_k \dots \overline{a_k}\alpha_{k0}\beta_k}_{sp-1})).$$

Случай циклической подстановки. Так как цикл длины k из \mathbf{S}_k имеет порядок k, то, полагая в теоремах 2.1 и 2.2 σ — цикл длины k из \mathbf{S}_k , получим следующие две теоремы.

Теорема 2.3. Пусть < A, $\eta > -$ *n*-арная группа $(n \ge 3)$, σ – цикл длины k из \mathbf{S}_k , $\mathbf{a} = (a_1, ..., a_k)$ – произвольный элемент l-арной группы $< A^k$, η_s , σ , k >, l = tk + 1 для некоторого натурального t,

$$\alpha_{jr} = \underbrace{a_{\sigma^{r}(j)} \dots a_{\sigma^{r}(j)}}_{n-3}, j = 1, \dots, k, r = 0, 1, \dots, k-1,$$

$$\beta_{j} = \overline{a_{\sigma^{k-1}(j)}} \alpha_{j(k-1)} \dots \overline{a_{\sigma(j)}} \alpha_{j1}.$$

Тогда элемент $\overline{\mathbf{a}} = (b_1, ..., b_k)$, где

$$b_j = \eta(\beta_j \underbrace{\overline{a_j} \alpha_{j0} \beta_j \dots \overline{a_j} \alpha_{j0} \beta_j}_{t-1}),$$

является косым для а, то есть

$$\begin{split} \overline{\mathbf{a}} &= (\eta(\beta_1 \underbrace{\overline{a_1}\alpha_{10}\beta_1 \dots \overline{a_1}\alpha_{10}\beta_1}_{t-1}), \dots \\ \dots, \eta(\beta_k \underbrace{\overline{a_k}\alpha_{k0}\beta_k \dots \overline{a_k}\alpha_{k0}\beta_k}_{t-1})). \end{split}$$

Теорема 2.4. Пусть < A, $\eta > -$ n-арная групna $(n \ge 3)$, σ – цикл длины k из \mathbf{S}_k , $\mathbf{a} = (a_1, ..., a_k)$ – npouзвольный элемент l-арной группы $< A^k$, $\eta_{s,\sigma,k} >$, n = pk+1 для некоторого натурального p,

$$\alpha_{jr} = \underbrace{a_{\sigma'(j)} \dots a_{\sigma'(j)}}_{n-3}, j = 1, \dots, k, r = 0, 1, \dots, k-1,$$

$$\beta_{j} = \overline{a_{\sigma^{k-1}(j)}} \alpha_{j(k-1)} \dots \overline{a_{\sigma(j)}} \alpha_{j1}.$$

Тогда элемент $\overline{\mathbf{a}} = (b_1, ..., b_k)$, где

$$b_j = \eta(\beta_j \underbrace{\overline{a_j} \alpha_{j0} \beta_j \dots \overline{a_j} \alpha_{j0} \beta_j}_{sp-1}),$$

является косым для а, то есть

$$\overline{\mathbf{a}} = (\eta(\beta_1 \underbrace{\overline{a_1}\alpha_{10}\beta_1 \dots \overline{a_1}\alpha_{10}\beta_1}_{sp-1}), \dots, \eta(\beta_k \underbrace{\overline{a_k}\alpha_{k0}\beta_k \dots \overline{a_k}\alpha_{k0}\beta_k}_{sp-1})).$$

Если в теореме 2.3 (в теореме 2.4) положить k=n-1, то t=s (r=1) и получим следующее следствие.

Следствие 2.1. Пусть $< A, \eta > -$ *n*-арная группа $(n \ge 3), \sigma - \mu \kappa \kappa$ длины n-1 из $\mathbf{S}_{n-1}, \mathbf{a} = (a_1, ..., a_{n-1}) - произвольный элемент <math>l$ -арной группы $< A^{n-1}, \eta_{s,\sigma,n-1} >$,

$$\alpha_{jr} = \underbrace{a_{\sigma'(j)} \dots a_{\sigma'(j)}}_{n-3}, j = 1, \dots, n-1, r = 0, 1, \dots, n-2,$$

$$\beta_j = \overline{a_{\sigma^{n-2}(j)}} \alpha_{j(n-2)} \dots \overline{a_{\sigma(j)}} \alpha_{j1}.$$

Тогда элемент $\overline{\mathbf{a}} = (b_1, ..., b_{n-1}),$ где

$$b_j = \eta(\beta_j \underbrace{\overline{a_j} \alpha_{j0} \beta_j \dots \overline{a_j} \alpha_{j0} \beta_j}_{s-1}),$$

является косым для а, то есть

$$\begin{split} \overline{\boldsymbol{a}} &= (\eta(\beta_1 \underbrace{\overline{a_1}\alpha_{10}\beta_1 \dots \overline{a_1}\alpha_{10}\beta_1}_{s-1}), \dots \\ \dots, \eta(\beta_{n-1} \underbrace{\overline{a_{n-1}}\alpha_{(n-1)0}\beta_{n-1} \dots \overline{a_{n-1}}\alpha_{(n-1)0}\beta_{n-1}}_{s-1})). \end{split}$$

Если в теореме 2.3 положить k = l - 1, то t = 1, а последовательность

$$\underbrace{\overline{a_j}\alpha_{j0}\beta_j\ldots\overline{a_j}\alpha_{j0}\beta_j}_{t-1}$$

окажется пустой. Поэтому из этой теоремы вытекает

Следствие 2.2. Пусть $< A, \eta > -$ п-арная группа $(n \ge 3), \sigma - \mu u \kappa n$ длины l-1 из \mathbf{S}_{l-1} . Тогда для любого элемента $\mathbf{a} = (a_1, ..., a_{l-1})$ l-арной групппы $< A^{l-1}, \eta_s, \sigma, l-1 >$ элемент $\overline{\mathbf{a}} = (b_1, ..., b_{l-1}),$ где

$$b_{j} = \eta(\beta_{j}) = \eta(\overline{a_{\sigma^{l-2}(j)}} \alpha_{j(l-2)} \dots \overline{a_{\sigma(j)}} \alpha_{j1}),$$

$$\alpha_{jr} = \underbrace{a_{\sigma^{r}(j)} \dots a_{\sigma^{r}(j)}}_{r=3}, j = 1, \dots, l-1, r = 1, \dots, l-2,$$

является косым для а, то есть

$$\overline{\mathbf{a}} = (\eta(\overline{a_{\sigma^{l-2}(1)}} \, \alpha_{1(l-2)} \dots \overline{a_{\sigma(1)}} \, \alpha_{11}), \dots$$

$$\dots, \eta(\overline{a_{\sigma^{l-2}(l-1)}} \, \alpha_{(l-1)(l-2)} \dots \overline{a_{\sigma(l-1)}} \, \alpha_{(l-1)1})).$$

Случай цикла (12 ... *d*). Конкретизируем полученные результаты для цикла $\sigma = (12 \dots d) \in \mathbf{S}_k$.

Теорема 2.5. Пусть < A, $\eta > - n$ -арная группа $(n \ge 3)$, $(12 \dots d) \in \mathbf{S}_k$, $d \le k$, l = td + 1 для некоторого натурального t, элемент $\overline{\mathbf{a}} = (b_1, \dots, b_k)$ является косым для элемента $\mathbf{a} = (a_1, \dots, a_k)$ в l-арной группе $< A^k$, $\eta_{s, (12 \dots d), k} >$. Тогда для любого $j = 1, \dots, k$ компонента b_j может быть представлена в виде

$$b_{j} = \eta(\beta_{j} \underbrace{\overline{a_{j}} \alpha_{j0} \beta_{j} \dots \overline{a_{j}} \alpha_{j0} \beta_{j}}_{i-1}), \qquad (2.6)$$

$$\frac{\partial e}{\beta_{j}} = \frac{1}{a_{j-1}} \alpha_{j(d-1)} \dots \frac{1}{a_{1}} \alpha_{j(d+1-j)} \frac{1}{a_{d}} \alpha_{j(d-j)} \dots \frac{1}{a_{j+1}} \alpha_{j1}, (2.7)$$

$$\alpha_{j0} = \underbrace{a_{j} \dots a_{j}}_{n-3}, \alpha_{j1} = \underbrace{a_{j+1} \dots a_{j+1}}_{n-3}, \dots, \alpha_{j(d-j)} = \underbrace{a_{d} \dots a_{d}}_{n-3},$$

$$\alpha_{j(d+1-j)} = \underbrace{a_{1} \dots a_{1}}_{n-3}, \dots, \alpha_{j(d-1)} = \underbrace{a_{j-1} \dots a_{j-1}}_{n-3}. (2.8)$$

Доказательство. Так как порядок подстановки (12 ... d) равен d, то по теореме 2.1 компонента b_j может быть представлена в виде (2.6), где

$$\beta_{j} = \overline{a_{\sigma^{d-1}(j)}} \ \alpha_{j(d-1)} \dots \overline{a_{\sigma(j)}} \ \alpha_{j1}, \qquad (2.9)$$

$$\alpha_{jr} = \underbrace{a_{\sigma'(j)} \dots a_{\sigma'(j)}}_{n-3}, \qquad (2.10)$$

$$j = 1, \dots, k, \ r = 0, 1, \dots, d-1.$$
A tak kak $\sigma = (12 \dots d), \text{ to}$

$$\sigma(j) = j+1,$$

$$\sigma^{2}(j) = \sigma(\sigma(j)) = \sigma(j+1) = j+2$$

$$\dots$$

$$\sigma^{d-j}(j) = \sigma(\sigma^{d-1-j}(j)) = \sigma(d-1) = d,$$

$$\sigma^{d+1-j}(j) = \sigma(\sigma^{d-j}(j)) = \sigma(d) = 1,$$

$$\sigma^{d-1}(j) = \sigma(\sigma^{d-2}(j)) = \sigma(j-2) = j-1, \sigma^{d}(j) = \sigma(\sigma^{d-1}(j)) = \sigma(j-1) = j.$$

Поэтому последовательности $\alpha_{j1}, \ldots, \alpha_{j(d-1)}$, определяемые равенствами (2.10), принимают вид (2.8), а правая часть равенства (2.9) совпадает с правой частью равенства (2.7).

Если порядок d цикла (12 ... d) делит n-1, то теорема 2.5 позволяют сформулировать ещё одну теорему.

Теорема 2.6. Пусть < A, $\eta > - n$ -арная группа $(n \ge 3)$, $(12 \dots d) \in \mathbf{S}_k$, $d \le k$, n = pd + 1 для некоторого натурального p, элемент $\overline{\mathbf{a}} = (b_1, \dots, b_k)$ является косым для элемента $\mathbf{a} = (a_1, \dots, a_k)$ в l-арной группе $< A^k$, $\eta_{s,(12 \dots d),k} >$. Тогда для любого $j = 1, \dots, k$ компонента b_j может быть представлена в виде

$$b_j = \eta(\beta_j \underbrace{\overline{a_j} \alpha_{j0} \beta_j \dots \overline{a_j} \alpha_{j0} \beta_j}_{sp-1}),$$

где последовательности $\beta_j, \alpha_{j1}, ..., \alpha_{j(d-1)}$ определяются соответственно равенствами (2.7) и (2.8).

Следующие две теоремы получаются из теорем 2.5 и 2.6, если в них положить d=k.

Теорема 2.7. Пусть < A, $\eta > -$ n-арная группа $(n \ge 3)$, l = tk + 1 для некоторого натурального t, элемент $\overline{\mathbf{a}} = (b_1, ..., b_k)$ является косым для элемента $\mathbf{a} = (a_1, ..., a_k)$ в l-арной группе $< A^k, \eta_{s, (12 ... k), k} >$. Тогда для любого j = 1, ..., k компонента b_j может быть представлена в виде

$$b_j = \eta(\beta_j \underbrace{\overline{a_j} \alpha_{j0} \beta_j \dots \overline{a_j} \alpha_{j0} \beta_j}_{t-1}),$$

где

$$\beta_{j} = \overline{a_{j-1}} \alpha_{j(k-1)} \dots \overline{a_{1}} \alpha_{j(k+1-j)} \overline{a_{k}} \alpha_{j(k-j)} \dots \overline{a_{j+1}} \alpha_{j1}, (2.11)$$

$$\alpha_{j0} = \underbrace{a_{j} \dots a_{j}}_{n-3}, \alpha_{j1} = \underbrace{a_{j+1} \dots a_{j+1}}_{n-3}, \dots, \alpha_{j(k-j)} = \underbrace{a_{k} \dots a_{k}}_{n-3},$$

$$\alpha_{j(k+1-j)} = \underbrace{a_{1} \dots a_{1}}_{n-3}, \dots, \alpha_{j(k-1)} = \underbrace{a_{j-1} \dots a_{j-1}}_{n-3}. (2.12)$$

Теорема 2.8. Пусть < A, $\eta > -$ п-арная группа $(n \ge 3)$, n = pk + 1 для некоторого натурального p, элемент $\overline{\mathbf{a}} = (b_1, ..., b_k)$ является косым для
элемента $\mathbf{a} = (a_1, ..., a_k)$ в l-арной группе $< A^k, \eta_{s, (12 ... k), k} >$. Тогда для любого j = 1, ..., kкомпонента b_j может быть представлена в виде

$$b_j = \eta(\beta_j \underbrace{\overline{a_j} \alpha_{j0} \beta_j \dots \overline{a_j} \alpha_{j0} \beta_j}_{sp-1}),$$

где последовательности $\beta_j, \alpha_{j1}, ..., \alpha_{j(k-1)}$ определяются соответственно равенствами (2.11) и (2.12).

Следующая теорема получается из теоремы 2.7, если в ней положить k = n - 1.

Теорема 2.9. Пусть < A, $\eta > -$ *n*-арная группа $(n \ge 3)$, элемент $\overline{\mathbf{a}} = (b_1, ..., b_{n-1})$ является косым для элемента $\mathbf{a} = (a_1, ..., a_{n-1})$ в l-арной группе $< A^{n-1}$, $\eta_{s, (12 ... n-1), n-1} >$. Тогда для любого j = 1, ..., n-1 компонента b_j может быть представлена в виде

$$b_j = \eta(\beta_j \underbrace{\overline{a_j} \alpha_{j0} \beta_j \dots \overline{a_j} \alpha_{j0} \beta_j}_{s-1}),$$

$$\begin{array}{c}
\alpha_{j0} = \overline{a_{j-1}} \ \alpha_{j(n-2)} \dots \overline{a_{1}} \ \alpha_{j(n-j)} \overline{a_{n-1}} \ \alpha_{j(n-1-j)} \dots \overline{a_{j+1}} \ \alpha_{j1}, \\
\alpha_{j0} = \underbrace{a_{j} \dots a_{j}}_{n-3}, \ \alpha_{j1} = \underbrace{a_{j+1} \dots a_{j+1}}_{n-3}, \dots, \\
\alpha_{j(n-1-j)} = \underbrace{a_{n-1} \dots a_{n-1}}_{n-3}, \\
\alpha_{j(n-j)} = \underbrace{a_{1} \dots a_{1}}_{n-3}, \dots, \alpha_{j(n-2)} = \underbrace{a_{j-1} \dots a_{j-1}}_{n-3}.
\end{array}$$

Замечание 2.1. Выпишем явный вид косых элементов из теоремы 2.9:

$$\begin{split} \overline{\boldsymbol{a}} &= (\eta(\beta_1 \underbrace{\overline{a_1}\alpha_{10}\beta_1 \dots \overline{a_1}\alpha_{10}\beta_1}_{s-1}), \dots, \\ \dots, \eta(\beta_{n-1} \underbrace{\overline{a_{n-1}}\alpha_{(n-1)0}\beta_{n-1} \dots \overline{a_{n-1}}\alpha_{(n-1)0}\beta_{n-1}}_{s-1}). \end{split}$$

$$\beta_1 = \overline{a_{n-1}} \ \underline{\alpha_{1(n-2)} \dots \overline{a_2}} \ \underline{\alpha_{11}},$$

$$\beta_2 = \overline{a_1} \ \underline{\alpha_{2(n-2)}} \ \overline{a_{n-1}} \ \underline{\alpha_{2(n-3)} \dots \overline{a_3}} \ \underline{\alpha_{21}},$$

$$b_3 = \overline{a_2} \ \underline{\alpha_{3(n-2)}} \ \overline{a_1} \ \underline{\alpha_{3(n-3)}} \ \overline{a_{n-1}} \ \underline{\alpha_{3(n-4)} \dots \overline{a_4}} \ \underline{\alpha_{31}},$$

$$\beta_{n-2} = \overline{a_{n-3}} \ \alpha_{(n-2)(n-2)} \dots \overline{a_{1}} \ \alpha_{(n-2)2} \overline{a_{n-1}} \ \alpha_{(n-2)1},$$

$$\beta_{n-1} = \overline{a_{n-2}} \ \alpha_{(n-1)(n-2)} \dots \overline{a_{1}} \ \alpha_{(n-1)1}.$$

Следующая теорема вытекает из теоремы 2.7, если в ней положить k = l - 1. Она же может быть доказана аналогично теореме 2.5, если воспользоваться следствием 2.2.

Теорема 2.10. Пусть $< A, \eta > -$ п-арная группа $(n \ge 3)$. Тогда для любого элемента $\mathbf{a} = (a_1, ..., a_{l-1})$ l-арной группы $< A^{l-1}, \eta_{s,(12...l-1),l-1} >$ элемент $\overline{\mathbf{a}} = (b_1, ..., b_{l-1})$, где

$$b_{j} = \eta(\overline{a_{j-1}} \underbrace{a_{j-1} \dots a_{j-1}}_{n-3} \dots$$

$$\dots \overline{a_{l}} \underbrace{a_{1} \dots a_{1}}_{n-3} \overline{a_{l-1}} \underbrace{a_{l-1} \dots a_{l-1}}_{n-3} \dots \overline{a_{j+1}} \underbrace{a_{j+1} \dots a_{j+1}}_{n-3})$$

является косым для а, то есть

$$\overline{\mathbf{a}} = (\eta(\overline{a_{l-1}} \ \underline{a_{l-1} \dots a_{l-1}} \ \dots \ \overline{a_2} \ \underline{a_2 \dots a_2}),$$

$$\eta(\overline{a_1} \ \underline{a_1 \dots a_1} \ \overline{a_{l-1}} \ \underline{a_{l-1} \dots a_{l-1}} \ \dots \ \overline{a_3} \ \underline{a_3 \dots a_3}),$$

$$\eta(\overline{a_2} \ \underline{a_2 \dots a_2} \ \overline{a_1} \ \underline{a_1 \dots a_1} \ \underline{a_{l-1} \dots a_1} \ \underline{a_{l-1} \dots a_{l-1}} \ \dots$$

$$\dots \ \overline{a_4} \ \underline{a_4 \dots a_4}),$$

$$\eta(\overline{a_{l-3}} \ \underline{a_{l-3} \dots a_{l-3}} \ \dots \ \overline{a_1} \ \underline{a_1 \dots a_1} \ \underline{a_{l-1}} \ \underline{a_{l-1} \dots a_{l-1}} \), \\
\eta(\overline{a_{l-2}} \ \underline{a_{l-2} \dots a_{l-2}} \ \dots \ \overline{a_1} \ \underline{a_1 \dots a_1} \ \underline{a_1 \dots a_1} \ \underline{a_1 \dots a_1} \)).$$

Предложение 2.1. Если в условиях теоремы 2.1 подстановка о оставляет неподвижным символ т, то

$$b_m = \eta(\underbrace{\overline{a_m} \dots \overline{a_m}}_{l-2} \underbrace{a_m \dots a_m}_{(n-3)(l-2)}).$$

Доказательство. Так как подстановка σ оставляет неподвижным символ m, то

$$a_{\sigma^{r}(m)} = a_{m},$$

$$\alpha_{mr} = \underbrace{a_{\sigma^{r}(m)} \dots a_{\sigma^{r}(m)}}_{n-3} = \underbrace{a_{m} \dots a_{m}}_{n-3} = \alpha_{m0}$$

для любого $r=0,\,1,\,\ldots,\,d-1.$ Поэтому, учитывая, что в n-арной группе $< A,\,\eta>$ любой её элемент a перестановочен со своим косым элементом $\overline{a},\,$ получим

$$b_m = \eta(\beta_m \underbrace{\overline{a_m} \alpha_{m0} \beta_m \dots \overline{a_m} \alpha_{m0} \beta_m}_{t-1}),$$

где

$$\beta_m = \underbrace{\overline{a_m} \alpha_{m0} \dots \overline{a_m} \alpha_{m0}}_{d-1}.$$

Поэтому

$$b_{m} = \eta(\underbrace{\overline{a_{m}}\alpha_{m0} \dots \overline{a_{m}}\alpha_{m0}}_{d-1+d(t-1)}) =$$

$$= \eta(\underbrace{\overline{a_{m}}a_{m} \dots a_{m}}_{n-3} \dots \overline{a_{m}}a_{m} \dots a_{m}}_{n-3}) =$$

$$= \eta(\underbrace{\overline{a_{m}}\dots \overline{a_{m}}}_{dt-1} \underbrace{a_{m}\dots a_{m}}_{(n-3)(dt-1)}) =$$

$$= \eta(\underbrace{\overline{a_{m}}\dots \overline{a_{m}}}_{l-2} \underbrace{a_{m}\dots a_{m}}_{(n-3)(l-2)}).$$

Замечание 2.2. Ясно, что в формулировке предложения 2.1 вместо теоремы 2.1 может присутствовать любая из теорем 2.2, 2.5 и 2.6.

3 Тернарный случай

Следующее следствие вытекает из теоремы 2.1, если в ней положить n=3.

Следствие 3.1. Пусть < A, $\eta > -$ тернарная группа, $\sigma -$ подстановка из \mathbf{S}_k порядка d, $\mathbf{a} = (a_1, ..., a_k) -$ произвольный элемент (2s+1)-арной группы $< A^k$, $\eta_{s,\sigma,k} >$, 2s = td для некоторого натурального t. Тогда элемент $\overline{\mathbf{a}} = (b_1, ..., b_k)$, где

$$\underbrace{a_j a_{\sigma^{d-1}(j)} \dots a_{\sigma(j)} \dots a_j a_{\sigma^{d-1}(j)} \dots a_{\sigma(j)}}_{t-1} \dots a_{\sigma(j)} \dots a_{\sigma(j)} \dots a_{\sigma(j)}),$$

является косым для а, то есть

$$\overline{\mathbf{a}} = (\eta(\overline{a_{\sigma^{d-1}(1)}} \dots \overline{a_{\sigma(1)}} \dots \overline{a_{\sigma(1)}}), \\ \underline{\overline{a_1}a_{\sigma^{d-1}(1)}} \dots \overline{a_{\sigma(1)}} \dots \overline{a_1}a_{\sigma^{d-1}(1)} \dots \overline{a_{\sigma(1)}}), \\ \underline{\cdots} \\ \eta(\overline{a_{\sigma^{d-1}(k)}} \dots \overline{a_{\sigma(k)}} \dots \overline{a_{\sigma(k)}} \\ \underline{\overline{a_k}a_{\sigma^{d-1}(k)}} \dots \overline{a_{\sigma(k)}} \dots \overline{a_k}a_{\sigma^{d-1}(k)} \dots \overline{a_{\sigma(k)}})).$$

В [1] следствие 3.1 доказано для чётного d. Следующее следствие вытекает из следствия 3.1, если в нём положить, d=2.

Спедствие 3.2. Пусть < A, $\eta > -$ тернарная группа, $\sigma -$ подстановка из S_k порядка 2, $\mathbf{a} = (a_1, ..., a_k) -$ произвольный элемент (2s+1)-арной группы $< A^k$, $\eta_{s,\sigma,k} >$. Тогда элемент $\overline{\mathbf{a}} = (b_1, ..., b_k)$, где

$$b_j = \eta(\overline{a_{\sigma(j)}} \underbrace{\overline{a_j} \overline{a_{\sigma(j)}} \dots \overline{a_j} \overline{a_{\sigma(j)}}}_{\text{s-l}}),$$

является косым для а, то есть

$$\overline{\mathbf{a}} = (\eta(\overline{a_{\sigma(1)}} \underbrace{\overline{a_1}\overline{a_{\sigma(1)}} \dots \overline{a_1}\overline{a_{\sigma(1)}}}_{s-1}), \dots, \eta(\overline{a_{\sigma(k)}} \underbrace{\overline{a_k}\overline{a_{\sigma(k)}} \dots \overline{a_k}\overline{a_{\sigma(k)}}}_{s-1})).$$

Следующее следствие вытекает из следствия 3.1, если в нём положить σ – цикл длины k.

Следствие 3.3. Пусть $< A, \eta > -$ тернарная группа, $\sigma -$ цикл длины k из \mathbf{S}_k , $\mathbf{a} = (a_1, ..., a_k) -$ произвольный элемент (2s+1)-арной группы $< A^k, \eta_{s,\sigma,k} >, 2s = tk$ для некоторого натурального t. Тогда элемент $\overline{\mathbf{a}} = (b_1, ..., b_k)$, где

$$\underbrace{\overline{a_{j} a_{\sigma^{k-1}(j)}} \dots \overline{a_{\sigma(j)}}_{\cdots} \dots \overline{a_{j} a_{\sigma^{k-1}(j)}}_{t-1} \dots \overline{a_{\sigma(j)}}_{\sigma(j)}}_{t-1} \dots \overline{a_{\sigma(j)}}_{\sigma(j)}),$$

является косым для а, то есть

$$\overline{\mathbf{a}} = (\eta(\overline{a_{\sigma^{k-1}(1)}} \dots \overline{a_{\sigma(1)}})$$

$$\underbrace{\underbrace{a_{1}a_{\sigma^{k-1}(1)}\dots a_{\sigma(1)}\dots a_{1}a_{\sigma^{k-1}(1)}\dots a_{\sigma(1)}}_{t-1}}, \dots \underbrace{a_{\sigma(1)}}_{t-1}\dots \underbrace{a_{\sigma(k)}}_{t-1}\dots \underbrace{a_{\sigma(k)}}_{t-1}\dots \underbrace{a_{\sigma(k)}}_{t-1}\dots \underbrace{a_{\sigma(k)}}_{t-1})).$$

Следующее следствие вытекает из следствия 3.2, если в нём положить, σ – транспозиция из S_k и учесть предложение 2.1.

Спедствие 3.4. Пусть < A, $\eta > -$ тернарная группа, $\sigma = (ij)$ — транспозиция из S_k , $\mathbf{a} = (a_1, ..., a_k)$ — произвольный элемент (2s+1)-арной группы $< A^k$, $\eta_{s,\sigma,k} >$. Тогда элемент $\overline{\mathbf{a}} = (b_1, ..., b_k)$, где

$$b_{j} = \eta(\overline{a_{i}} \ \underline{a_{j} a_{i}} \dots \overline{a_{j} a_{i}}),$$

$$b_{i} = \eta(\overline{a_{j}} \ \underline{a_{i} a_{j}} \dots \overline{a_{i} a_{j}}),$$

$$b_{m} = \eta(\underline{a_{m}} \dots \overline{a_{m}}), m \neq i, m \neq j,$$

является косым для а.

Следующее следствие вытекает из теоремы 2.5, если в ней положить n=3.

Следствие 3.5. Пусть $< A, \eta > -$ тернарная группа, $(12 \dots d) \in \mathbf{S}_k, d \le k, 2s = td$ для некоторого натурального t, элемент $\overline{\mathbf{a}} = (b_1, \dots, b_k)$ является косым для элемента $\mathbf{a} = (a_1, \dots, a_k)$ в (2s+1)-арной группе $< A^k, \eta_{s, (12 \dots d), k} >$. Тогда для любого $j = 1, \dots, k$ компонента b_j может быть представлена в виде

$$b_j = \eta(\beta_j \underbrace{\overline{a_j}\beta_j \dots \overline{a_j}\beta_j}_{t-1}),$$

где

$$\beta_j = \overline{a_{j-1}} \dots \overline{a_1} \overline{a_d} \dots \overline{a_{j+1}}.$$

Следующее следствие вытекает из теоремы 2.10, если в ней положить n=3.

Следствие 3.6. Пусть $< A, \eta > -$ тернарная группа. Тогда для любого элемента

$$\mathbf{a} = (a_1, ..., a_{2s})$$
 (2s + 1)-арной группы $< A^{2s}, \, \eta_{s, \, (12 \, ... \, 2s), \, 2s} >$ элемент $\overline{\mathbf{a}} = (b_1, \, ..., \, b_{2s}), \, \epsilon \partial e$ $b_j = \eta(\overline{a_{j-1}} \, ... \, \overline{a_1} \, \overline{a_{2s}} \, ... \, \overline{a_{j+1}}),$

является косым для а, то есть

$$\overline{\mathbf{a}} = (\eta(\overline{a_{2s}} \dots \overline{a_{2}}), \eta(\overline{a_{1}} \overline{a_{2s}} \dots \overline{a_{3}}), \dots$$

$$\dots, \eta(\overline{a_{2s-2}} \dots \overline{a_{1}} \overline{a_{2s}}), \eta(\overline{a_{2s-1}} \dots \overline{a_{1}})).$$

ЛИТЕРАТУРА

- 1. Гальмак, А.М. О косых элементах в полиадических группах специального вида / А.М. Гальмак // Проблемы физики, математики и техники. -2020. № 2 (43). С. 64–68.
- 2. Гальмак, А.М. О полиадических операциях на декартовых степенях / А.М. Гальмак, А.Д. Русаков / Известия ГГУ им. Ф. Скорины. $2014.- \text{N} \ 3 \ (84).-\text{C}.\ 35-39.$
- 3. *Гальмак*, *А.М.* О разрешимости уравнений в < A^k , $\eta_{s,\,\sigma,\,k}$ > / А.М. Гальмак $/\!/$ Веснік МДУ ім. А.А. Куляшова. 2018. № 1 (51). С. 4-10.
- 4. *Гальмак*, *А.М.* Многоместные операции на декартовых степенях / А.М. Гальмак. Минск: Изд. центр БГУ, 2009. 265 с.
- 5. *Post*, *E.L.* Polyadic groups / E.L. Post // Trans. Amer. Math. Soc. 1940. Vol. 48, № 2. P. 208–350.
- 6. *Русаков*, *С.А.* Алгебраические n-арные системы / С.А. Русаков. Мн.: Навука і тэхніка, 1992. 245 с.
- 7. Гальмак, А.М. n-Арные группы. Часть 1/ А.М. Гальмак. Гомель: ГГУ им. Ф. Скорины, 2003.-202 с.
- 8. *Гальмак*, *А.М. п*-Арные группы. Часть 2 / А.М. Гальмак. Минск: Изд. центр БГУ, 2007. 324 с.
- 9. *Dörnte*, *W*. Untersuchungen über einen verallgemeinerten Gruppenbegrieff / W. Dörnte // Math. $Z.-1928.-Bd.\ 29.-S.\ 1-19.$

Поступила в редакцию 14.05.2020.