УДК 519.21

СТАЦИОНАРНОЕ РАСПРЕДЕЛЕНИЕ СЕТЕЙ ДЖЕКСОНА С ЭКСПОНЕНЦИАЛЬНЫМ ОГРАНИЧЕНИЕМ НА ВРЕМЯ ПРЕБЫВАНИЯ ЗАЯВОК

Ю.В. Малинковский, В.А. Немилостивая

Гомельский государственный университет им. Ф. Скорины

STATIONARY DISTRIBUTION OF JACKSON NETWORKS WITH AN EXPONENTIAL CONSTRAINT ON THE SOJOURN TIME OF CLAIMS

Yu.V. Malinkovskii, V.A. Niamilastsivaya

F. Scorina Gomel State University

Рассматривается экспоненциальная сеть массового обслуживания, содержащая узлы двух типов — однолинейные и многолинейные. В отличие от сетей Джексона время пребывания в узлах сети является случайной величиной, условное распределение которой при фиксированном числе заявок в узле является показательным. Для однолинейных узлов матрицы маршрутизации обслуженных и необслуженных заявок, вообще говоря, различны, а для многолинейных узлов они совпадают. Устанавливается достаточное условие эргодичности и находится стационарное распределение.

Ключевые слова: открытая сеть массового обслуживания, однолинейные и многолинейные узлы, ограниченное время пребывания, условие эргодичности, стационарное распределение.

An exponential queuing network containing nodes of two types – single-line and multi-line is considered. In contrast to Jackson networks, the sojourn time at the nodes of the network is a random variable, the conditional distribution of which is exponential for a fixed number of claims in the node. For single-line nodes, the routing matrices of the served and non-served customers are, generally speaking, different, and for multi-line nodes they coincide. A sufficient ergodicity condition is established and a stationary distribution is found.

Keywords: open queuing network, single-line and multi-line nodes, limited sojourn time, ergodicity condition, stationary distribution.

Введение

Системы обслуживания с экспоненциальными ограничениями на время пребывания рассматривались в классической монографии Б.В. Гнеденко, И.В. Коваленко [1], в которой кратко изложена история вопроса и приведена соответствующая библиография. Сети массового обслуживания с аналогичными ограничениями на время пребывания в узлах рассматривались в работах [2]-[6]. В работах [7], [8] впервые рассматривались сети Джексона и Геленбе, в которых матрицы маршрутизации обслуженных заявок и заявок, время пребывания которых истекло, различны. В настоящей статье исследуется стационарное поведение сети, в которой в некоторых узлах эти матрицы различны, а в других узлах - совпадают.

1 Постановка задачи

В сеть массового обслуживания, содержащую N узлов, поступает стационарный пуассоновский поток с параметром λ . Поступающая заявка с вероятностью p_{0i} направляется в i-й узел $\left(i=\overline{1,N},\sum\limits_{i=1}^{N}p_{0i}=1\right)$. Число мест для ожидания в узле бесконечно. В сети имеются два типа узлов — однолинейные и многолинейные

(на самом деле многолинейные системы сводятся к однолинейным с переменной условной интенсивностью обслуживания $\mu(n) = \mu I_{\{n \neq 0\}}$, где n число заявок в системе, I_A — индикатор события A, равный 1, если A происходит, и равный 0, если A не происходит).

Время обслуживания заявки единственным прибором i-го узла имеет показательное распределение с параметром $\mu_i\left(i=\overline{1,M}\right)$, условное распределение времени обслуживания заявки в остальных N-M узлах, когда там находится n_i заявок, — показательное с параметром $\mu_i\left(n_i\right)$, причём $\mu_i\left(n_i\right) > 0$ для $n_i \in \mathbb{N}$ и

$$\mu_i(0) = 0 \left(i = \overline{M+1,N}\right).$$

Время пребывания заявки в i-ом узле является случайной величиной, условное распределение которой (если в i-м узле находится n_i заявок)

показательное с параметром
$$\frac{\mathbf{v}_i}{n_i} \left(i = \overline{1, N} \right)$$
. Дру-

гими словами, условная вероятность того, что пребывание каждой заявки в i-м узле закончится в промежутке времени [t,t+h), если в момент t

в узле находилось n_i заявок, равна $\frac{V_i}{n_i}h + o(h)$

при $h \to 0$, а условная вероятность завершения пребывания хотя бы одной из этих заявок равна $v_i h + o(h)$. Если заявка поступает в узел, свободный от заявок, она сразу начинает обслуживаться. Для определенности будем предполагать, что заявки обслуживаются в порядке поступления в узлы. Заявка, обслуженная в i-м узле, мгновенно и независимо от других заявок с вероятностью p_{ij} направляется в j-й узел, а с вероят-

ностью
$$p_{i0}$$
 покидает сеть $\left(i, j = \overline{1, N}, \sum\limits_{j=0}^{N} p_{ij} = 1\right)$.

Заявка, время пребывания которой в i-м узле закончилось, мгновенно и независимо от других заявок с вероятностью $r_{i,j}$ для $i=\overline{1,M}$ переходит в j-й узел, а с вероятностью r_{i0} покидает сеть

$$\left(j=\overline{1,N},\sum\limits_{j=0}^{N}r_{ij}=1\right)$$
. Если же $i=\overline{M+1,N}$, то она

ведёт себя как обслуженная, то есть с вероятностью p_{ij} направляется в j-й узел, а с вероятностью p_{i0} покидает сеть $\left(j=\overline{1,N}\right)$. Для удобства введём ещё узел 0, представляющий собой внешность сети. Введём также две стохастические матрицы:

$$P = \begin{pmatrix} 0 & p_{01} & p_{02} & \cdots & p_{0N} \\ p_{10} & p_{11} & p_{12} & \cdots & p_{1N} \\ \cdots & \cdots & \cdots & \cdots \\ p_{N0} & p_{N1} & p_{N2} & \cdots & p_{NN} \end{pmatrix},$$

$$R = \begin{pmatrix} 0 & p_{01} & p_{02} & \cdots & p_{0N} \\ r_{10} & r_{11} & r_{12} & \cdots & r_{1N} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ r_{N0} & r_{N1} & r_{N2} & \cdots & r_{NN} \end{pmatrix}.$$

Матрица P является как матрицей маршрутизации обслуженных заявок, так и матрицей маршрутизации неудовлетворенных заявок для узлов $i=\overline{M+1},\overline{N},$ а R — матрицей маршрутизации неудовлетворенных заявок для узлов $i=\overline{1,M}.$ Итак, $p_{00}=r_{00}=0,$ $r_{0j}=p_{0j}$ для $j=\overline{1,N}.$

Очевидно, матрица
$$S = \left(s_{i,j}, i, j = \overline{0, N}\right)$$
, где
$$s_{0j} = p_{0j}, \quad s_{ij} = \frac{\mu_i p_{ij} + \nu_i r_{ij}}{\mu_i + \nu_i} = \frac{\mu_i}{\mu_i + \nu_i} p_{ij} + \frac{\nu_i}{\mu_i + \nu_i} r_{ij},$$
 $i = \overline{1, M}, \quad s_{ij} = p_{ij}, i = \overline{M + 1, N}, \quad \text{является стохастической и управляет движением заявок по узлам $0, 1, ..., N.$$

2 Изолированный узел

Изолируем *i*-ый узел от сети, считая, что в него поступает стационарный пуассоновский

поток с той же интенсивностью $\lambda \varepsilon_i$, как и в сети. Во всём остальном функционирование в узлах такое же, как и в сети. Обозначим через $\tilde{n}_i(t)$ число заявок в изолированном от сети узле $\left(i=\overline{1,N}\right)$.

Для $i=\overline{1,N}$ получается система $M\left|M\right|1$ с поступающим пуассоновским потоком интенсивности $\lambda \varepsilon_i$, интенсивностью обслуживания μ_i , а время пребывания заявки в системе — случайная величина, имеющая показательное распределение с параметром v_i . Она описывается таким же процессом размножения и гибели $\tilde{n}_i\left(t\right)$, как и стандартная система $M\left|M\right|1$ с пуассоновским поступающим потоком интенсивности $\lambda \varepsilon_i$ и интенсивностью обслуживания $\mu_i + v_i$.

Уравнения равновесия для вертикальных сечений имеют вид:

$$\lambda \varepsilon_i p_i (n_i - 1) = (\mu_i + \nu_i) p_i (n_i), n_i = 1, 2, ..., i = \overline{1, M}.$$

Для эргодичности цепи Маркова $\tilde{n}_i(t)$, описывающей изолированный узел, необходимо и достаточно чтобы загрузка i-го узла $\rho_i = \frac{\lambda \varepsilon_i}{\mu_i + \nu_i} < 1, i = \overline{1, M}$. При этом стационарное

распределение цепи Маркова $\tilde{n}_i(t)$ имеет вид:

$$p_i(n_i) = \rho_i^{n_i}(1-\rho_i), n_i = 1, 2,$$

Теперь изолируем i-ый узел для $i=\overline{M}+1,N$. Получаем систему с поступающим пуассоновским потоком интенсивности $\lambda \varepsilon_i$, а условное распределение времени обслуживания прибором при условии, что в системе находится n_i заявок, — показательное с параметром $\mu_i\left(n_i\right)$, зависящим от n_i . Время пребывания заявки в системе — случайная величина, условное распределение которой при фиксированном n_i — показательное с

параметром
$$\frac{\mathbf{v}_i}{n_i}$$
.

Получаем уравнения равновесия для вертикальных сечений:

$$\lambda \varepsilon_i p_i (n_i - 1) = (\mu_i (n_i) + v_i) p_i (n_i),$$

$$n_i = 1, 2, \dots, i = \overline{M + 1, N}.$$

Стационарное распределение цепи Маркова $\tilde{n}_{i}(t)$:

$$p_{i}(n_{i}) = p_{i}(0) \prod_{i=1}^{n_{i}} \frac{\lambda \varepsilon_{i}}{\mu_{i}(l) + \nu_{i}}, n_{i} = 1, 2, ...,$$

где

$$p_i(0) = \left(\sum_{n_i=0}^{\infty} \prod_{l=1}^{n_i} \frac{\lambda \varepsilon_i}{\mu_i(l) + \nu_i}\right)^{-1}.$$

Необходимым и достаточным условием эргодичности цепи Маркова $\tilde{n}_i(t)$, описывающей изолированный узел, будет сходимость ряда

$$\sum_{n_{i}=0}^{\infty}\prod_{l=1}^{n_{i}}\frac{\lambda\varepsilon_{i}}{\mu_{i}(l)+\nu_{i}}<\infty.$$

3 Основной результат

Обозначим через $\lambda \varepsilon_i$ интенсивность потока заявок, выходящих из i-го узла $\left(i=\overline{1,N}\right)$. Поскольку заявки не рождаются и не теряются при прохождении узлов, то в стационарном режиме с точностью до множителя λ (на который можно сократить) выполняется следующий закон сохранения:

$$\varepsilon_{j} = p_{0j} + \sum_{i=1}^{N} \varepsilon_{i} s_{ij} =
= p_{0j} + \sum_{i=1}^{M} \varepsilon_{i} \frac{\mu_{i} p_{ij} + \nu_{i} r_{ij}}{\mu_{i} + \nu_{i}} + \sum_{i=M+1}^{N} \varepsilon_{i} p_{ij}, j = \overline{1, N}.$$
(3.1)

Будем предполагать, что матрица S неприводима. Тогда уравнение (3.1), которое будем называть уравнением трафика, при фиксированных $\mu_i, \nu_i, i = \overline{1, N}$, будет иметь единственное положительное решение $(\varepsilon_1, \varepsilon_2, ..., \varepsilon_N)$ (то есть все $\varepsilon_i > 0$).

Лемма 3.1. При выполнении (3.1)

$$\sum_{i=1}^{N} \varepsilon_{i} s_{i0} = \sum_{i=1}^{M} \varepsilon_{i} \frac{\mu_{i} p_{i0} + v_{i} r_{i0}}{\mu_{i} + v_{i}} + \sum_{i=M+1}^{N} \varepsilon_{i} p_{i0} = 1 \quad (3.2)$$

 $j = \overline{1, N}$, получим (3.1) по

$$\begin{split} &\sum_{j=1}^{N} \varepsilon_{j} = \sum_{j=1}^{N} p_{0j} + \sum_{j=1}^{N} \sum_{i=1}^{N} \varepsilon_{i} s_{ij} = 1 + \sum_{i=1}^{N} \varepsilon_{i} \sum_{j=1}^{N} s_{ij} = \\ &= 1 + \sum_{i=1}^{N} \varepsilon_{i} \left(1 - s_{i0} \right) = 1 + \sum_{i=1}^{N} \varepsilon_{i} - \sum_{i=1}^{N} \varepsilon_{i} s_{i0}, \end{split}$$

откуда следует $\sum\limits_{i=1}^{N} \mathbf{\varepsilon}_{i} \mathbf{s}_{i0} = 1$.

Физический смысл (3.2) состоит в том, что (3.2), умноженное на λ , выражает равенство интенсивностей выходящего из сети и входящего в неё потоков.

Состоянием сети в момент t будем считать значение многомерной цепи Маркова

$$\overrightarrow{n(t)} = (n_1(t), ...n_N(t))$$

с непрерывным временем, где $n_i(t)$ — число заявок в i-ом узле в этот момент времени. Пространство состояний этой цепи $X=Z_+^N$, где $Z_+=\left\{0,1,2,...\right\}$. В силу неприводимости матрицы маршрутизации и строгой положительности интенсивностей выхода из состояний этой цепи в моменты её скачков, цепь $\overline{n(t)}$, очевидно, — неприводимая цепь Маркова. Для $i=\overline{1,M}$ назовём

 $\rho_i = \frac{\lambda \varepsilon_i}{\mu_i + \nu_i}$ загрузкой *i*-го узла. Ниже будет по-

казано, что условие

$$\begin{cases}
\rho_{i} < 1, & i = \overline{1, M}, \\
\sum_{n_{i}=0}^{M} \prod_{l=1}^{n_{i}} \frac{\lambda \varepsilon_{i}}{\mu_{i}(l) + \nu_{i}} < +\infty, & i = \overline{M+1, N}
\end{cases}$$
(3.3)

является достаточным для эргодичности цепи Маркова $\overrightarrow{n(t)}$.

Пусть
$$\left\{p(\vec{n}), \vec{n} \in \mathbf{X}\right\}$$
 — её предельное эрго-

дическое распределение, являющееся при выполнении (3.3) единственным решением уравнений глобального равновесия

$$\begin{split} p\left(\overrightarrow{n}\right) & \left[\lambda + \sum_{i=1}^{M} \left(\mu_{i}\left(1 - p_{ii}\right) + \nu_{i}\left(1 - r_{ii}\right)\right) \mathbf{I}_{\{n_{i} \neq 0\}} + \right. \\ & \left. + \sum_{i=M+1}^{N} \left(\mu_{i}\left(n_{i}\right) + \nu_{i}\mathbf{I}_{\{n_{i} \neq 0\}}\right) \left(1 - p_{ii}\right)\right] = \\ & = \sum_{i=1}^{N} p\left(\overrightarrow{n} - \overrightarrow{e_{i}}\right) \lambda p_{0i}\mathbf{I}_{\{n_{i} \neq 0\}} + \sum_{i=1}^{M} p\left(\overrightarrow{n} + \overrightarrow{e_{i}}\right) \left(\mu_{i}p_{i0} + \nu_{i}r_{i0}\right) + \\ & \left. + \sum_{i=M+1}^{N} p\left(\overrightarrow{n} + \overrightarrow{e_{i}}\right) \left(\mu_{i}\left(n_{i} + 1\right) + \nu_{i}\right)p_{i0} + \right. \quad (3.4) \\ & \left. + \sum_{i=1}^{N} \sum_{\substack{j=1 \ j \neq i}}^{M} p\left(\overrightarrow{n} + \overrightarrow{e_{j}} - \overrightarrow{e_{i}}\right) \left(\mu_{j}p_{ji} + \nu_{j}r_{ji}\right)\mathbf{I}_{\{n_{i} \neq 0\}} + \right. \\ & \left. + \sum_{j=M+1}^{N} p\left(\overrightarrow{n} + \overrightarrow{e_{j}} - \overrightarrow{e_{i}}\right) \left(\mu_{j}\left(n_{j} + 1\right) + \nu_{j}\right)p_{ji}\mathbf{I}_{\{n_{i} \neq 0\}} \right], n \in Z_{+}^{N}. \end{split}$$

Для удобства при составлении уравнений локального равновесия перепишем (3.4) в следуюшем виле:

$$p(\vec{n}) \left[\lambda + \sum_{i=1}^{M} (\mu_{i} (1 - p_{ii}) + \nu_{i} (1 - r_{ii})) I_{\{n_{i} \neq 0\}} + \right]$$

$$+ \sum_{i=M+1}^{N} (\mu_{i} (n_{i}) + \nu_{i} I_{\{n_{i} \neq 0\}}) (1 - p_{ii}) \right] =$$

$$= \sum_{i=1}^{N} p(\vec{n} - \vec{e_{i}}) \lambda p_{0i} I_{\{n_{i} \neq 0\}} + \sum_{i=1}^{M} p(\vec{n} + \vec{e_{i}}) (\mu_{i} p_{i0} + \nu_{i} r_{i0}) +$$

$$+ \sum_{i=M+1}^{N} p(\vec{n} + \vec{e_{i}}) (\mu_{i} (n_{i} + 1) + \nu_{i}) p_{i0} + (3.5)$$

$$+ \sum_{i=1}^{M} \left[\sum_{j=1}^{N} p(\vec{n} + \vec{e_{j}} - \vec{e_{i}}) (\mu_{j} p_{ji} + \nu_{j} r_{ji}) I_{\{n_{i} \neq 0\}} + \right]$$

$$+ \sum_{j=M+1}^{N} p(\vec{n} + \vec{e_{j}} - \vec{e_{i}}) (\mu_{j} (n_{j} + 1) + \nu_{j}) p_{ji} I_{\{n_{i} \neq 0\}} +$$

$$+ \sum_{i=M+1}^{N} \sum_{j=1}^{M} p(\vec{n} + \vec{e_{j}} - \vec{e_{i}}) (\mu_{j} p_{ji} + \nu_{j} r_{ji}) I_{\{n_{i} \neq 0\}} +$$

$$+ \sum_{i=M+1}^{N} p(\vec{n} + \vec{e_{j}} - \vec{e_{i}}) (\mu_{j} (n_{j} + 1) + \nu_{j}) p_{ji} I_{\{n_{i} \neq 0\}} +$$

$$+ \sum_{i=M+1}^{N} p(\vec{n} + \vec{e_{j}} - \vec{e_{i}}) (\mu_{j} (n_{j} + 1) + \nu_{j}) p_{ji} I_{\{n_{i} \neq 0\}} +$$

Для получения первого уравнения локального равновесия прировняем между собой члены левой и правой части (3.5), не содержащие индикаторов (то есть интенсивность потока вероятности

из состояния n за счёт поступления заявок в сеть из вне и интенсивность потока вероятности в состояние n за счёт ухода заявок из сети):

$$\lambda p(\vec{n}) = \sum_{i=1}^{M} p(\vec{n} + \vec{e_i}) (\mu_i p_{i0} + \nu_i r_{i0}) + \sum_{i=M+1}^{N} p(\vec{n} + \vec{e_i}) (\mu_i (n_i + 1) + \nu_i) p_{i0}.$$
(3.6)

Остальные уравнения локального равновесия получаются из (3.5) приравниванием коэффициентов при однолинейных индикаторах $I_{\{n_i \neq 0\}}$ в левой и правой части (3.5) (то есть интенсивностей потока вероятности из состояния n за счёт ухода заявок из i-го узла и потока вероятности в состояние \vec{n} за счёт поступления заявок в i-ый узел):

$$p(\vec{n})(\mu_{i}(1-p_{ii})+\nu_{i}(1-r_{ii})) =$$

$$= \lambda p_{0i}p(\vec{n}-\vec{e_{i}})+$$

$$+\sum_{\substack{j=1\\j\neq i}}^{M}p(\vec{n}+\vec{e_{j}}-\vec{e_{i}})(\mu_{j}p_{ji}+\nu_{j}r_{ji})+ (3.7)$$

$$+\sum_{j=M+1}^{N}p(\vec{n}+\vec{e_{j}}-\vec{e_{i}})(\mu_{j}(n_{j}+1)+\nu_{j})p_{ji},$$

$$i = \overline{1,M}, n \in Z_{+}^{N},$$

$$p(\vec{n})(\mu_{i}(n_{i})+\nu_{i})(1-p_{ii}) =$$

$$= \lambda p_{0i}p(\vec{n}-\vec{e_{i}})+$$

$$+\sum_{\substack{j=1\\j\neq i}}^{M}p(\vec{n}+\vec{e_{j}}-\vec{e_{i}})(\mu_{j}p_{ji}+\nu_{j}r_{ji})+ (3.8)$$

$$+\sum_{j=M+1}^{N}p(\vec{n}+\vec{e_{j}}-\vec{e_{i}})(\mu_{j}(n_{j}+1)+\nu_{j})p_{ji},$$

$$i = \overline{M+1,N}, n \in Z_{+}^{N}.$$

При этом учитывался тот факт, что

$$\mu_i(n_i) = \mu_i(n_i) \mathbf{I}_{\{n_i \neq 0\}}.$$

Решение локальных уравнений равновесия будем искать в виде $p(\vec{n}) = p_1(n_1) p_2(n_2) ... p_N(n_N)$, где $p_i(n_i)$ – стационарное распределение изолированного *i*-го узла. Разделим (3.6) на $p(\vec{n})$ и подставляя $p(\vec{n}) = p_1(n_1) p_2(n_2) ... p_N(n_N)$ в полученное равенство, получим:

$$\lambda = \sum_{i=1}^{M} \frac{p(\overrightarrow{n} + \overrightarrow{e_i})}{p_i(n_i)} (\mu_i p_{i0} + \nu_i r_{i0}) +$$

$$+ \sum_{i=M+1}^{N} \frac{p(\overrightarrow{n} + \overrightarrow{e_i})}{p_i(n_i)} (\mu_i (n_i + 1) + \nu_i) p_{i0} =$$

$$= \sum_{i=1}^{M} \frac{\lambda \varepsilon_i}{\mu_i + \nu_i} (\mu_i p_{i0} + \nu_i r_{i0}) + \sum_{i=M+1}^{N} \lambda \varepsilon_i p_{i0} = \lambda$$

в силу леммы 3.1, то есть (3.6) выполняется. Теперь проверим (3.7):

$$\begin{split} \left(\mu_{i}(1-p_{ii})+\nu_{i}(1-r_{ii})\right) &= \lambda p_{0i} \frac{p_{i}(n_{i}-1)}{p_{i}(n_{i})} + \\ &+ \sum_{\substack{j=1\\j\neq i}}^{M} \frac{p_{j}(n_{j}+1)}{p_{j}(n_{j})} \frac{p_{i}(n_{i}-1)}{p_{i}(n_{i})} \left(\mu_{j}p_{ji}+\nu_{j}r_{ji}\right) + \\ &+ \sum_{\substack{j=1\\j\neq i}}^{N} \frac{p_{j}(n_{j}+1)}{p_{j}(n_{j})} \frac{p_{i}(n_{i}-1)}{p_{i}(n_{i})} \left(\mu_{j}(n_{j}+1)+\nu_{j}\right) p_{ji} = \\ &= \lambda p_{0i} \frac{\mu_{i}+\nu_{i}}{\lambda \varepsilon_{i}} + \sum_{\substack{j=1\\j\neq i}}^{M} \frac{\lambda \varepsilon_{j}}{\mu_{j}+\nu_{j}} \frac{\mu_{i}+\nu_{i}}{\lambda \varepsilon_{i}} \left(\mu_{j}p_{ji}+\nu_{j}r_{ji}\right) + \\ &+ \sum_{j=M+1}^{N} \frac{\lambda \varepsilon_{j}}{\mu_{j}(n_{j}+1)+\nu_{j}} \frac{\mu_{i}+\nu_{i}}{\lambda \varepsilon_{i}} \left(\mu_{j}(n_{j}+1)+\nu_{j}\right) p_{ji} = \\ &= \frac{\mu_{i}+\nu_{i}}{\varepsilon_{i}} \left[p_{0i} + \sum_{\substack{j=1\\j\neq i}}^{M} \varepsilon_{j} \frac{\mu_{j}p_{ji}+\nu_{j}r_{ji}}{\mu_{j}+\nu_{j}} + \sum_{\substack{j=M+1}}^{N} \varepsilon_{j}p_{ji}\right] = \\ &= \frac{\mu_{i}+\nu_{i}}{\varepsilon_{i}} \left[p_{0i} + \sum_{j=1}^{M} \varepsilon_{j} \frac{\mu_{j}p_{ji}+\nu_{j}r_{ji}}{\mu_{j}+\nu_{j}} + \sum_{j=M+1}^{N} \varepsilon_{j}p_{ji} - \\ &- \varepsilon_{i} \frac{\mu_{i}p_{ii}+\nu_{i}r_{ii}}{\mu_{i}+\nu_{i}}\right] = \frac{\mu_{i}+\nu_{i}}{\varepsilon_{i}} \left[1 - \frac{\mu_{i}p_{ii}+\nu_{i}r_{ii}}{\mu_{i}+\nu_{i}}\right] = \\ &= \mu_{i}+\nu_{i}-\mu_{i}p_{ii}-\nu_{i}r_{ii} = \mu_{i}(1-p_{ii})+\nu_{i}(1-r_{ii}) \\ \text{в силу уравнения трафика (3.1). Теперь также проверим (3.8):} \end{split}$$

в силу уравнения трафика (3.1). Теперь также

$$\left(\mu_{i} \left(n_{i} \right) + \nu_{i} \right) \left(1 - p_{ii} \right) = \lambda p_{0i} \frac{p_{i} \left(n_{i} - 1 \right)}{p_{i} \left(n_{i} \right)} + \\ + \sum_{j=1}^{M} \frac{p_{j} \left(n_{j} + 1 \right)}{p_{j} \left(n_{j} \right)} \frac{p_{i} \left(n_{i} - 1 \right)}{p_{i} \left(n_{i} \right)} \left(\mu_{j} p_{ji} + \nu_{j} r_{ji} \right) + \\ + \sum_{j=1}^{N} \frac{p_{j} \left(n_{j} + 1 \right)}{p_{j} \left(n_{j} \right)} \frac{p_{i} \left(n_{i} - 1 \right)}{p_{i} \left(n_{i} \right)} \left(\mu_{j} \left(n_{j} + 1 \right) + \nu_{j} \right) p_{ji} = \\ = \lambda p_{0i} \frac{\mu_{i} \left(n_{i} \right) + \nu_{i}}{\lambda \varepsilon_{i}} + \\ + \sum_{j=1}^{M} \frac{\lambda \varepsilon_{j}}{\mu_{j} + \nu_{j}} \frac{\mu_{i} \left(n_{i} \right) + \nu_{i}}{\lambda \varepsilon_{i}} \left(\mu_{j} p_{ji} + \nu_{j} r_{ji} \right) + \\ + \sum_{j=M+1}^{N} \frac{\mu_{i} \left(n_{i} \right) + \nu_{i}}{\lambda \varepsilon_{i}} \lambda \varepsilon_{j} p_{ji} = \frac{\mu_{i} \left(n_{i} \right) + \nu_{i}}{\varepsilon_{i}} \times \\ \times \left[p_{0i} + \sum_{j=1}^{M} \varepsilon_{j} \frac{\mu_{j} p_{ji} + \nu_{j} r_{ji}}{\mu_{j} + \nu_{j}} + \sum_{j=M+1}^{N} \varepsilon_{j} p_{ji} - \varepsilon_{i} p_{ji} \right] = \\ = \frac{\mu_{i} \left(n_{i} \right) + \nu_{i}}{\varepsilon_{i}} \times \\ \times \left[p_{0i} + \sum_{j=1}^{M} \varepsilon_{j} \frac{\mu_{j} p_{ji} + \nu_{j} r_{ji}}{\mu_{j} + \nu_{j}} + \sum_{j=M+1}^{N} \varepsilon_{j} p_{ji} - \varepsilon_{i} p_{ji} \right] = \\ = \frac{\mu_{i} \left(n_{i} \right) + \nu_{i}}{\varepsilon_{i}} \left[\varepsilon_{i} - \varepsilon_{i} p_{ji} \right] = \left(\mu_{i} \left(n_{i} \right) + \nu_{i} \right) \left(1 - p_{ii} \right).$$

То есть (3.7) и (3.8) также выполняются. Теперь докажем, что условие

$$\begin{cases} \rho_{i} < 1, & i = \overline{1, M}, \\ \sum_{n_{i}=0}^{\infty} \prod_{l=1}^{n_{i}} \frac{\lambda \varepsilon_{i}}{\mu_{i}(l) + v_{i}} < +\infty, & i = \overline{M+1, N} \end{cases}$$

является достаточным условием эргодичности цепи Маркова $\overline{n(t)}$. Для этого воспользуемся следующим вариантом теоремы Фостера: для того, чтобы неприводимая консервативная цепь Маркова с непрерывным временем была эргодической, необходимо и достаточно, чтобы существовало ненулевое решение системы уравнений равновесия $\left\{p\left(\overrightarrow{n}\right), \overrightarrow{n} \in Z_+^N\right\}$ такое, что

$$\sum_{n \in \mathbb{Z}^N} \left| q(\vec{n}) p(\vec{n}) \right| < \infty.$$

Здесь $p(\vec{n}) = p_1(n_1) p_2(n_2)...p_N(n_N)$, $q(\vec{n})$ — интенсивность выхода n(t) из состояния $\vec{n} = (n_1,...,n_N)$. Ранее уже говорилось, что рассматриваемая цепь неприводима. Консервативность сети также очевидна. Теперь проверим абсолютную сходимость ряда:

$$\begin{split} &\sum_{n \in Z_{+}^{N}} \left| q(\vec{n}) p(\vec{n}) \right| = \\ &= \sum_{n \in Z_{+}^{N}} \left[\lambda + \sum_{i=1}^{M} \left(\mu_{i} \left(1 - p_{ii} \right) + \nu_{i} \left(1 - r_{ii} \right) \right) I_{\{n_{i} \neq 0\}} + \right. \\ &\left. + \sum_{i=M+1}^{N} \left(\mu_{i} \left(n_{i} \right) + \nu_{i} I_{\{n_{i} \neq 0\}} \right) \left(1 - p_{ii} \right) \right] \times \\ &\times \prod_{i=1}^{M} \rho_{i}^{n_{i}} \left(1 - \rho_{i} \right) \prod_{i=M+1}^{N} \left(p_{i} \left(0 \right) \prod_{i=1}^{n_{i}} \frac{\lambda \varepsilon_{i}}{\mu_{i} \left(l \right) + \nu_{i}} \right). \end{split}$$

Так как выполняется условие эргодичности, то очевидно, наш ряд будет сходиться, если будет сходиться ряд

$$\begin{split} \sum_{n \in \mathbb{Z}_{+}^{N}} \sum_{i=M+1}^{N} \left(\mu_{i} \left(n_{i} \right) + \nu_{i} \right) \prod_{i=M+1}^{N} \prod_{l=1}^{n_{i}} \frac{\lambda \varepsilon_{i}}{\mu_{i} \left(l \right) + \nu_{i}} = \\ &= \sum_{n \in \mathbb{Z}_{+}^{N}} \prod_{i=M+1}^{N} \prod_{l=1}^{n_{i}-1} \frac{\lambda \varepsilon_{i}}{\mu_{i} \left(l \right) + \nu_{i}} < \infty. \end{split}$$

Таким образом, доказано, что условие (3.3) является достаточным условием эргодичности цепи. Доказана следующая теорема:

Теорема 3.1. При выполнении условия (3.3) цепи Маркова $\overline{n(t)}$ эргодична, а её единственное стационарное распределение имеет форму про-изведения $p(\vec{n}) = p_1(n_1) p_2(n_2)...p_N(n_N)$, где $p_i(n_i)$ — стационарное распределение изолированного і-го узла, а $\left\{ \varepsilon_i, i = \overline{1,N} \right\}$ — решение уравнения трафика (3.1).

Заключение

Поскольку стационарное распределение найдено, то можно найти различные показатели эффективности функционирования сети в стационарном режиме. Например, легко находится среднее число заявок в узлах $i=\overline{1,M}$ по формуле

$$\overline{n_i} = \sum_{n_i=0}^{\infty} n_i p_i \left(n_i\right) = \left(1 - \rho_i\right) \sum_{n_i=0}^{\infty} n_i \rho_i^{n_i} = \frac{\rho_i}{\left(1 - \rho_i\right)}.$$

Для нахождения средних времён пребывания или ожидания заявок в узлах можно воспользоваться формулами Литтла.

Полученные результаты могут быть применены при проектировании новых и модернизации уже существующих сетей передачи данных и информационно-вычислительных сетей.

ЛИТЕРАТУРА

- 1. *Гнеденко*, *Б.В.* Введение в теорию массового обслуживания / Б.В. Гнеденко, И.Н. Коваленко. М.: Наука, 1987. 431с.
- 2. Ковалёв, Е.А. Сети массового обслуживания с ограниченным временем ожидания в очередях / Е.А. Ковалёв // АВТ. 1985. № 2. С. 50—55.
- 3. Якубович, О.В. Стационарное распределение сети массового обслуживания с различными типами сигналов и положительных заявок и ограничением на время пребывания / О.В. Якубович // Известия Гомельского государственного университета им. Ф. Скорины. 2008. № 5 (50). Ч. 2. С. 207–211.
- 4. Якубович, О.В. Сеть массового обслуживания со случайным временем пребывания положительных, отрицательных заявок и сигналов / О.В. Якубович, В.Е. Евдокимович // Проблемы физики, математики и техники. 2010. № 4 (5). С. 63–67.
- 6. Якубович, О.В. Многорежимная сеть массового обслуживания со случайным временем пребывания различных типов отрицательных заявок / О.В. Якубович, Ю.Е. Дудовская // Проблемы физики, математики и техники. 2012. $Notemath{\mathbb{N}}$ 4 (137). С. 74—77.
- 7. Малинковский, O.B. Сети Джексона с однолинейными узлами и ограниченным временем пребывания или ожидания / IO.B. Малинковский // ABT. 2015. No 4. C. 67-78.
- 8. *Малинковский*, *Ю.В.* Стационарное распределение вероятностей состояний G-сетей с ограниченным временем пребывания / Ю.В. Малинковский // АВТ. 2017. № 10. С. 155–167.

Поступила в редакцию 30.06.2020.