•ФИЗИКА•

УДК 544.556.1:546.26:620.3

ФОРМИРОВАНИЕ СТРУКТУРИРОВАННЫХ ПОКРЫТИЙ НА ОСНОВЕ УГЛЕРОДА И ПОЛИАКРИЛАМИДА, ВЛИЯНИЕ ТЕРМООБРАБОТКИ НА ИХ ФАЗОВЫЙ СОСТАВ И МОРФОЛОГИЮ

А.С. Руденков, М.А. Ярмоленко

Гомельский государственный университет им. Ф. Скорины

FORMATION OF STRUCTURED COATINGS BASED ON CARBON AND POLYACRYLAMIDE, INFLUENCE OF THERMAL TREATMENT ON THEIR PHASE COMPOSITION AND MORPHOLOGY

A.S. Rudenkov, M.A. Yarmolenko

F. Scorina Gomel State University

Рассмотрены морфологические особенности двухслойных покрытий на основе полиакриламида и углерода, сформированных в едином технологическом цикле электронно-лучевым и катодно-импульсным методами соответсвенно. Установлено влияние термообработки на воздухе на морфологию, фазовый состав и структурные превращения в таких двухслойных системах. Показано, что термообработка слоя полиакриламида на воздухе (300° С, 60 минут) приводит к полному исчезновению нитрильных групп, что может являться следствием процессов циклизации.

Ключевые слова: полиакриламид, углеродные покрытия, морфология, фазовый состав.

The morphological features of two-layer coatings based on polyacrylamide and carbon, formed in a single technological cycle by electron beam and cathode-pulse methods, respectively, are considered. The effect of heat treatment in air on the morphology, phase composition, and structural transformations in such two-layer systems is established. It was shown that heat treatment of a polyacrylamide layer in air (300° C, 60 minutes) leads to the complete disappearance of nitrile groups, which may be a consequence of cyclization.

Keywords: polyacrylamide, carbon coatings, morphology, phase composition.

Введение

Наноразмерные углеродные покрытия являются метастабильной формой аморфного (a-C) или гидрогенизированного аморфного углерода (a-C:H). Такие покрытия можно представить как трехмерную сетку ковалентно связанных атомов углерода с различным типом гибридизации, расположенных случайным образом [1]. Структура и фазовый состав углеродных покрытий (содержание водорода, гибридизация, доля С – H, С – С связей) зависят от выбора методов и технологических параметров формирования и определяют их механические, тепло- и электрофизические свойства [1], [2].

Основными недостатками углеродных покрытий являются высокий уровень внутренних напряжений и низкая термостойкость (< 350° C) [3]. Высокий уровень внутренних напряжений ограничивает толщину покрытий (не более 1 мкм), препятствует нанесению их на полимерные подложки, механические характеристики (модуль Юнга, коэффициент Пуассона и др.) которых заметно отличаются от аналогичных характеристик углеродных слоев. Это ограничивает область практического использования углеродных покрытий, в частности в области модифицирования изделий медицинского назначения на основе высокомолекулярных соединений.

© Руденков А.С., Ярмоленко М.А., 2020

Внутренние напряжения можно снизить легированием или формированием многослойных структур, состоящих из чередующихся мягких и твердых слоев [4]. В качестве углеродного слоя перспективно использование гидрогенизированных углеродных покрытий, характеризующихся более низкой температурой диффузии водорода и способностью к трансформации в нанокристаллический графит при отжиге на воздухе при температуре 300° С [5]. В качестве подслоя, обеспечивающего взаимодействие подложки с углеродным слоем, впервые предложено использовать покрытие на основе полиакриламида (ПАА). Органическое покрытие осаждали в результате воздействия потока низкоэнергетических электронов на порошок полиакриламида. Предварительные исследования показали схожесть молекулярной структуры осаждаемого слоя с молекулярной структурой полиакрилонитрила (ПАН). Это позволило предположить возможность возникновения циклических углеродных структур при термообработке нанесенного покрытия [6]. Возникновение циклических углеродных структур способно приводить к повышению адгезионного взаимодействия между углеродным и органическим слоями, а также между органическим слоем и эластичной подложкой. Следует отметить, что структурирование органического покрытия при термообработке может сопровождаться растрескиванием верхнего углеродного слоя. Известно, что вследствие специфических механизмов деформации наноструктурные материалы обладают одновременно высокими прочностью и пластичностью и, благодаря этому, могут соединять края зарождающихся трещин, тем самым повышая прочность системы [7]. При этом в настоящее время отсутствует информация о методах формирования, морфологических особенностях и свойствах гибридных систем, представляющих собой чередующиеся полимерные и наноструктурированные углеродные слои, что связано со сложностью интеграции различных методик синтеза в едином технологическом цикле.

Целью работы является определение влияния подслоя на основе полиакриаламида, формируемого методом электронно-лучевого диспергирования, на морфологию и фазовый состав углеродных покрытий, осаждаемых из плазмы импульсного катодно-дугового разряда.

1 Методика эксперимента

Полимерные слои осаждали из газовой фазы, генерируемой методом электронно-лучевого диспергирования полиакриаламида потоком электронов с энергией 800–1600 эВ и плотностью 0,01–0,03 А/см² при давлении остаточных газов в вакуумной камере $\approx 4 \cdot 10^{-3}$ Па. Затем в едином технологическом цикле наносились углеродные слои (УП) при напряжении разряда 250–300 В в течение 2500 импульсов с частотой следования 5 Гц.

Для проведения анализа процессов фазовых трансформаций отдельные углеродные и полимерные слои, а также бислойные системы на их основе (ПАА / УП), подвергались термообработке на воздухе при температуре 300° С в течение 1 часа.

Морфологические особенности осаждаемых слоев были изучены средствами атомно-силовой микроскопии (АСМ) при помощи прибора Solver Pro (NT-MDT, Россия). По способу фиксации силового взаимодействия зонда и образца исследования проводились по полуконтактной методике. Поле сканирования – 4×4 мкм.

Анализ фазового состава углеродных покрытий и слоев на основе ПАА осуществлялся средствами спектроскопии комбинационного рассеяния с помощью спектрометра Senterra с длиной волны возбуждающего излучения 532 нм, мощностью 5 мВт. Молекулярная структура ПАА определялась методом ИК-спектроскопии.

Ширина запрещенной зоны рассчитывалась на основании данных УФ-ВИД спектроскопии по методу Таунца [8].

2 Результаты и их обсуждение

На рисунке 2.1 представлены изображения поверхности покрытий, полученные при помощи оптического микроскопа с 400-кратным увеличением (поле 340×250 мкм). Термообработка покрытий ПАА приводит к структурированию их поверхности (рисунок 1, б), что вызвано, по всей видимости, процессами циклизации с участием нитрильных групп. Установлено, что для углеродных слоев, нанесенных на ПАА, также характерно образование системы связанных между собой поверхностных локальных образований (рисунок 2.1, в, г), в том числе и для образцов не подвергнутых термообработке. Такие морфологические изменения могут быть вызваны существенным различием механических и теплофизических свойств слоев, образующих рассматриваемую систему: более мягкий слой ПАА деформируется при нагреве на стадии нанесения углеродного слоя и под действием возникающих в нем внутренних напряжений. Структурированные области имеют микрометровый размер.

Результаты АСМ показывают (рисунок 2.2), что данные морфологические особенности сохраняются и на более низкоразмерном уровне (таблица 2.1). Большая субшероховатость бислойных систем ПАА / УП обусловлена морфологическими особенностями промежуточного слоя ПАА. Основными изменениями морфологии, вызванными термообработкой, как углеродных слоев так и систем ПАА / УП, являются увеличение числа отдельных структурных образований (далее зерен) и уменьшение их размера (таблица 2.1), что объясняется следствием фазовой трансформации $sp^3 \rightarrow sp^2$. Увеличение размера зерен ПАА при термообработке объясняется слиянием кластеров графита, образующихся в результате карбонизации полимера.

Общей тенденцией для всех рассматриваемых образцов является возрастание средней высоты в результате термообработки на воздухе при температуре 300° С, что обусловлено окислительными процессами и последующей частичной деструкцией покрытия.

Покрытие	Средняя высота, нм	Ra, нм	Rms, нм	Плотность	Средний диаметр			
				зерен, шт.	зерен, нм			
ПАА	46,6 / 78,5	10,2 / 14,3	12,8 / 18,5	241 / 102	100 / 172			
УП	5,3 / 6,7	0,3 / 0,3	0,7 / 0,9	22 / 34	56 / 53			
ПАА / УП	108,5 / 117,0	20,9 / 26,0	26,2 / 35,4	42 / 121	309 / 159			
*до / после термообработки								

Таблица 2.1 – Статистическая обработка результатов АСМ

Формирование структурированных покрытий на основе углерода и полиакриламида, влияние термообработки на их фазовый ...

Рисунок 1 – Оптическая микроскопия поверхности: *a*) – ПАА, *б*) – ПАА после термообработки, *в*) – ПАА / УП, *г*) – ПАА / УП после термообработки

a) - ПАА; b) - ПАА после термообработки; <math>b) - ПАА / УП; c) - ПАА / УП после термообработки

Карбонизация покрытия на основе ПАА в результате термообработки косвенно подтверждается данными УФ-ВИД спектроскопии. Показано, что ширина запрещенной зоны для покрытия на основе ПАА составляет 3,3 эВ (рисунок 2.3).

Рисунок 2.3 – Зависимость (D hv)² от энергии кванта падающего излучения

В то же время после термообработки ширину запрещенной зоны покрытий ПАА определить не удалось, что может объясняться увеличением содержания sp²-кластеров и улучшением проводящих свойств покрытия.

Анализ ИК-спектров порошка ПАА показывает, что полосы поглощения с максимумами при 1660 и 1560 см⁻¹ в ИК-спектре (ПАА) соответствуют карбонильному поглощению амидных групп [8] (полосы «амид І» и «амид ІІ») (рисунок 2.4). Поглощение в области волновых чисел 3600-3000 см⁻¹ может быть обусловлено валентными колебаниями ОН- и NH-групп. В ИКспектре ПАА поглощение в области волновых чисел 3000-2800 см⁻¹ является следствием валентных колебаний С-Н связей [8]. При этом наибольшие значения оптических плотностей характерны для полос поглощения, располагающихся в области 1200-800 см⁻¹ ИК-спектра. В отмеченной области проявляются колебания простых и сложных эфирных связей (С – О – С) [9]. Наличие эфирных связей в молекулярной структуре полимера указывает на его сшитую структуру. Такая структура обуславливает высокие гелеобразующие свойства полимера.

В ИК-спектре покрытия, в отличие от ИКспектра исходного полимера ПАА, присутствует полоса поглощения при 2236 см⁻¹, обусловленная валентными колебаниями нитрильных групп $(C \equiv N)$ [8]. Значение оптической плотности отмеченной полосы поглощения является максимальным в ИК-спектре покрытия на основе ПАА. ИК-спектр покрытия характеризуется присутствием интенсивного поглощения при 1430 см⁻¹. В ИК-спектре исходного полимера полоса поглощения при 1430 см⁻¹ присутствует, но является слабовыраженной. Принимая во внимание наличие в ИК-спектре покрытия поглощения в области 1600-1500 см⁻¹, полосу при 1430 см⁻¹ можно связать с присутствием в структуре покрытия ионизированных карбоксильных групп [9]. В ИК-спектре покрытия полосы поглощения эфирных групп не являются наиболее выраженными. Их значения оптических плотностей могут заметно уступать значениям оптической плотности большинства полос поглощения, образующих ИК-спектр покрытия. Таким образом, воздействие потока низкоэнергетических электронов на ПАА инициирует ряд химически сложных превращений. В частности, происходит разрушение амидной группы с возникновением нитрильной. Появляются карбоксильные группы, что является следствием отщепления от молекулы ПАА аминогруппы. Частичному разрушению подвергаются и эфирные связи.

Термообработка покрытия на воздухе (300° С, 60 минут) приводит к полному исчезновению нитрильных групп. Подобное изменение может являться следствием процессов циклизации. В этом случае должны образовываться С = N связи. В ИК-спектре валентные колебания С = N связей проявляются в области поглощения амидных и карбоксильных групп (1660–1590 см⁻¹). Это существенно затрудняет их идентификацию. Термообработка дополнительно сопровождается окислением покрытия. На это указывает рост значения оптической плотности полосы при 1130 см⁻¹ [8].

Из-за малой информативности ИК-спектров углеродных покрытий анализ фазового состава углеродных слоев и бислойных покрытий ПАА / УП до и после термообработки осуществлялся средствами спектроскопии комбинационного рассеяния (КР) (таблица 2.2). КР-спектры углеродных покрытий содержат характерный пик в интервале 1000–1800 см⁻¹ [10]. Общепринятым является разложение такого пика на два (D-пик между 1300–1500 см⁻¹ и G-пик около 1580 см⁻¹) посредством функции Гаусса, что позволяет провести детальный анализ фазового состава углеродных покрытий [11].

Анализ КР спектров, с одной стороны, подтверждает данные атомно-силовой микроскопии: рост соотношения I_D / I_G свидетельствует об уменьшении размеров sp²-кластеров, а уменьшение ширины G-пика – об увеличении степени их упорядоченности [11]. С другой стороны,

Проблемы физики, математики и техники, № 2 (43), 2020

таолица 2.2 – Апализ результатов КГ спектроскопии									
Образец	D-пик		G-пи	т / т					
	Положение, см ⁻¹	Ширина, см ⁻¹	Положение, см ⁻¹ Ширина, см ⁻¹		I_D / I_G				
УП	1444 / 1379	189 / 161	1573 / 1565	211 / 180	0,25 / 0,31				
ПАА / УП	1413 / 1404	165 / 186	1546 / 1576	149 / 100	0,51 / 0,64				

Таблица 2.2 – Анализ результатов КР спектроскопии

согласно результатам ACM размер sp²-кластеров однослойных углеродных покрытий меньше, чем у системы ПАА / УП, а соотношение I_D / I_G ниже. Такое противоречие объясняется деформацией углеродных слоев, расположенных на ПАА, поскольку, согласно [12], рост I_D / I_G может указывать на наличие дефектов и напряженно-деформированных состояний.

Выводы

Воздействие потока низкоэнергетических электронов на полиакриаламид инициирует ряд химически сложных превращений. В частности, происходит разрушение амидной группы с возникновением нитрильной. Показано, что термообработка слоя полиакриламида на воздухе (300° С, 60 минут) приводит к полному исчезновению нитрильных групп, что может являться следствием процессов циклизации. Нанесение подслоя полиакриламида является эффективным технологическим приемом формирования микроструктурированных углеродных покрытий с развитой морфологией. Структурирование углеродных покрытий вызвано существенным различием механических свойств слоев, образующих рассматриваемую систему: более мягкий слой полиакриамида деформируется вследствие нагрева на стадии осаждения углеродного покрытия и под действием возникающих в нем внутренних напряжений. Наличие напряженно-деформированных областей подтверждается результатами КР-спектроскопии. Показано, что термообработка системы ПАА / УП приводит к уменьшению размеров sp²-кластеров.

ЛИТЕРАТУРА

1. *Donnet*, *C*. Tribology of Diamond-like Carbon Films: Fundamentals and Applications / C. Donnet, A. Erdemir. – Springer Science & Business Media, 2007. – 680 p.

2. Mechanical properties and thermomechanical stability of diamond-like carbon films synthesized by pulsed vacuum arc plasma deposition / Y.X. Leng [et al.] // Suraface and Coatings Technology. – 2003. – Vol. 173. – P. 67–73.

3. *Donnet*, *C*. Recent progress on the tribology of doped diamond-like and carbon alloy coatings: a review / C. Donnet // Surface and Coatings Technology. – 1998. – Vol. 100–101. – P. 180–186.

4. Effect of vacuum arc deposition parameters on the properties of amorphous carbon thin films / S. Anders [et al.] // Surface and Coatings Technology. – 1994. – Vol. 68–69. – P. 388–393.

5. *The thermal stability of diamond-like carbon /* D.R. Tallant [et al.] // Daimond and Related Materials. – 1995. – Vol. 4. – P. 191 – 199.

6. Effect of amorphous carbon on the tensile behavior of polyacrylonitrile (PAN)-based carbon fibers / F. Yang [et al.] // J. Mater. Sci. – 2019. – Vol. 54. – P. 8800–8813.

7. Витязь, П.А. Наноматериаловедение: учебное пособие для студентов учреждений высшего образования по техническим специальностям / П.А. Витязь, Н.А. Свидунович, Д.В. Куис. – Минск: Вышэйшая школа, 2015. – 511 с.

8. Chemical composition, morphology and optical properties of zincsulfide coatings deposited by low-energy electron beam evaporation / A.V. Rogachev [et al.] // Applied Surface Science. – 2014. – Vol. 303. – P. 23–29.

9. *Беллами, Л.* Инфракрасные спектры сложных молекул / Л. Беллами. – М.: Мир, 1963. – 592 с.

10. *Shirakawa*, *H*. Infrared Spectra of Poly (acetylene) / H. Shirakawa, S. Ikeda // Polymer Journal. – 1971. – Vol. 2, № 2. – P. 231–244.

11. Long-term stability of hydrogenated DLC coatings: Effects of aging on the structural, chemical and mechanical properties / M. Cloutier [et al.] // Diamond and Related Materials. – 2014. – Vol. 48. – P. 65–72.

12. *Ferrari*, *A.C.* Interpretation of Raman spectra of disordered and amorphous carbon / A.C. Ferrari, J. Robertson // Physical Review B. – 2000. – Vol. 61. – P. 4095–4107.

13. *Haque*, *A*. Synthesis of diamond nanostructures from carbon nanotube and formation of diamond-CNT hybrid structures / A. Haque // Carbon. – 2019. – Vol. 150. – P. 388–395.

Работа выполнена при финансовой поддержке Министерства образования Республики Беларусь в рамках задания 2.64 «Физико-химические основы осаждения и механические свойства углеродных покрытий, содержащих планарные наноструктурные функциональные слои».

Поступила в редакцию 16.03.2020.