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На протяжении всей статьи все группы конечны, и G всегда обозначает конечную групу. Мы говорим, что подгруппа H 

из G почти модульна в G, если A нормальна в G или G
GH H  и каждый главный фактор /H K  группы G между GH  

и GH  является почти центральным в G, то есть | / || ( / ) |GH K GC H K  делит pq для некоторых простых чисел p и q. Мы 

говорим, что подгруппа A группы G является: 
(i) почти  -субнормальной в G, если , ,A L T    где L является почти модульной подгруппой и T является  -субнор-

мальной подгруппой в G; 
(ii) почти  -перестановочной в G, если , ,A L T    где L – почти модульная подгруппа и T является  -перестано-

вочной подгруппой G. 
(iii) слабо  -перестановочной в G, если в G имеется почти  -перестановочная подгруппа S и подгруппа T такая, что 
G HT  и .H T S H    
В данной статье изучаются конечные группы с некоторыми системами почти  -субнормальных, почти  -перестано-
вочных и слабо  -перестановочных подгрупп. Обобщены некоторые известные результаты. 
 
Ключевые слова: конечная группа, n-максимальная подгруппа, почти  -субнормальная подгруппа, почти  -переста-
новочная подгруппа, почти  -нильпотентная группа. 
 
Throughout this paper, all groups are finite and G always denotes a finite group. We say that a subgroup H of G is nearly modu-

lar in G if either A is normal in G or G
GH H  and every chief factor /H K  of G between GH  and GH  is nearly central in G, 

that is, | / || / ( / ) |GH K G C H K  divides pq for some primes p and q. We say that a subgroup A of G is: 

(i) nearly  -subnormal in G if , ,A L T    where L is a nearly modular subgroup and T is a  -subnormal subgroup of G; 

(ii) nearly  -permutable in G if , ,A L T    where L is a nearly modular subgroup and T is a  -permutable subgroup of G.  

(iii) weakly  -permutable in G if  there are a nearly  -permutable subgroup S and a subgroup T of G such that G HT  and 
.H T S H    

In the given paper, we study finite groups with some systems of nearly  -subnormal, nearly  -permutable and weakly 
 -permutable subgroups. Some known results are generalized.  
 
Keywords: finite group, n-maximal subgroup, nearly  -subnormal subgroup, nearly  -permutable subgroup,  -nearly nil-
potent group. 
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 1 The concepts and results 
Throughout this paper, all groups are finite and 

G always denotes a finite group. 
We say that: a chief factor /H K  of G is 

nearly central in G if | / || / ( / ) |GH K G C H K  di-

vides pq for some primes p and q; a subgroup H of 
G is nearly modular in G if either A is normal in G 
or G

GH H  and every chief factor of G between 

GH  and GH  is nearly central in G. 

In what follows,   is some partition of   [1], 
that is, { },i i I   ∣  where i

i I
   and 

i j     for all .i j   

We say that a chief factor /H K  is:  -central 
in G if | / || / ( / ) |GH K G C H K  is  -primary; near-

ly  -central in G if /H K  is either  -central or 
nearly central in G.  

A set   of subgroups of G is a complete Hall 
 -set of G [2], [3] if every member 1  of   is a 
Hall i -subgroup of G for some i   and   

contains exactly one Hall i -subgroup of G for all i; 

G is said to be  -full if G possesses a complete Hall 
 -set. 

A subgroup A of G is called [1]:  -subnormal 
in G [1] if there is a subgroup chain 
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0 1 tA A A A G      
such that either 1i iA A   or 1/ ( )

ii i AA A   is  -pri-

mary for all 1, , ;i t    -permutable in G if G is 

 -full and A permutes with all Hall i -subgroups 

of G for all i. 
The  -subnormal and  -permutable sub-

groups proved to be very useful and found many 
applications in the study of various classes of gener-
alized solvable groups (see, for example, the papers 
[1]–[13]). In this paper, we consider the following 
generalizations of these two concepts. 

Definition 1.1. We say that a subgroup A of G is: 
(i) nearly  -subnormal (respectively nearly 

subnormal) in G if , ,A L T    where L is a nearly 
modular subgroup and T is a  -subnormal (respec-
tively subnormal) subgroup of G; 

(ii) nearly  -permutable (respectively nearly 
S-permutable) in G if , ,A L T    where L is a nearly 
modular subgroup and T is a  -permutable (respec-
tively an S-permutable) subgroup of G; 

(iii) weakly  -permutable (respectively 
weakly S-permutable) in G if there are a nearly 
 -permutable (respectively a nearly S-permutable) 
subgroup S and a subgroup T of G such that 
G HT  and .H T S H    

Example 1.2. Let p, q, r, t be distinct primes, 
where q divides 1p   and T divides 1.r   Let 

,pV Q C   where q is a simple q pC -module 

which is faithful for pC  r tC C  a non-abelian group 

of order rt. 
(i) Let ( ) ( ).p r tG Q C C C    Let B  be a 

subgroup of order q in q. Then B Q  since .p q  

Let , .rH C B    Then A is nearly modular in G, so 

H is nearly subnormal in G. Assume that H is nearly 
modular in G. Then ( )pB H Q C    is nearly 

modular in ( )pQ C  by Lemma 2.8 (4) in [15]. 

Hence q is cyclic. This contradiction shows that H is 
not nearly modular in G. Similarly, if H is subnor-
mal in G, then ( )t r tC H C C    is subnormal in 

r tC C  and so tC  is normal in .r tC C  But then 

r tC C  is abelian. This contradiction shows that H 

is not subnormal in G. 
(ii) Now, let p be a simple pV -module which 

is faithful for V  and ( ( )) ( ).p r tG P Q C C C     

Since q divides 1,p   pq is supersoluble. Hence for 

some normal subgroup B  of pq we have 1 .B P   
Then for every Sylow p-subgroup pG  of G we have 

,pB P G   so .p p pBG G G B   On the other 

hand, for every Sylow q-subgroup xQ  of G we have 

,xQ PQ  so .x xBQ Q B  Hence B  is S-permu-

table in G. It is clear that tC  is nearly modular in G. 

Then ,H A B    is nearly S-permutable in G. 
Moreover, H is neither nearly modular nor S-per-
mutable in G. 

We say that G is: nearly  -nilpotent if every 
non-frattini chief factor /H K  of G (that is, 

/ ( / ) )H K G K  is nearly  -central in G, 

srtongly supersoluble if G is supersoluble and G 
induces on any its chief factor /H K  an automor-
phism group of square free order. 

Recall that if  

1 1 0 ,n nM M M M G             (1.1) 

where iM  is a maximal subgroup of 1iM   for all 

1, , ,i n   then the chain (1.1) is said to be a maxi-

mal chain of G of length n and nM  ( 0),n   is an 

n-maximal subgroup of G. 
Our first observation is the following  
Theorem 1.3. (i) If in every maximal chain 

3 2 1 0M M M M G     of G, of length 3, at least 

one of the subgroups 3 ,M  2 ,M  or 1M  is nearly 

 -subnormal in G, then G is  -soluble. 
(ii) If every 2-maximal subgroup of G is 

 -permutable, then G is either  -nilpotent or su-
persoluble. 

(iii) If every 2-maximal subgroup of G is nearly 
S-permutable in G, then G is a nearly nilpotent 
group. Hence G is strongly supersoluble. 

Corollary 1.4 (Spencer [16]). If in every maxi-
mal chain 3 2 1 0M M M M G     of G, of length 

3, at least one of the subgroups 3 ,M  2 ,M  or 1M  is 

subnormal in G, then G is soluble.  
Corollary 1.5 (Agrawal [17]). If every 2-maxi-

mal subgroup of G is S-permutable in G, then G is 
supersoluble. 

Corollary 1.6 (Huppert [18]). If every 3-maxi-
mal subgroup of G is normal in G, then G is soluble. 

Corollary 1.7 (Guo, Skiba in [13]). If in every 
maximal chain 3 2 1 0M M M M G     of G, of 

length 3, at least one of the subgroups 3 ,M  2 ,M  or 

1M  is  -subnormal in G, then G is  -soluble.  

A subgroup M  of G is called modular if M  is 
a modular element (in the sense of Kurosh [19, 2, 
p. 43]) of the lattice ( )G  of all subgroups of G, 

that is,  
(i) , ,X M Z X M Z        for all ,X G  

Z G  such that ,X Z  and  
(ii) , ,M Y Z M Y Z        for all ,Y G  

Z G  such that .M Z  
From Theorem 5.2.5 in [19] it follows that 

every modular subgroup of G is also nearly modular 
in G. Hence we get from Theorem 1.3 (iii) the fol-
lowing known result.  

Corollary 1.8 (Schmidt [20]). If every 2-maxi-
mal subgroup M of G is modular, then G is nearly 
nilpotent.  
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Theorem 1.9. Suppose that G is not  -nilpo-
tent. Then every maximal chain of length 2 in G in-
cludes a proper nearly  -subnormal subgroup of G 
if and only if G is either nearly  -nilpotent or a 
Schmidt group (that is, a non-nilpotent group all of 
which subgroups are nilpotent) with abelian Sylow 
subgroups. 
 In the case when {{2},{3}, }    we get from 

Theorem 1.9 the following known results. 
Corollary 1.10 (See Theorem A in [21]). Sup-

pose that G is not nilpotent. Then every maximal 
chain of length 2 in G includes a proper subgroup H 
of G of the form , ,M A B    where A is modulart 
and B is subnormal in G, if and only if G is either 
nearly nilpotent or a Schmidt group with abelian 
Sylow subgroups.  

Corollary 1.11 (Schhmidt [20]). If every 2-ma-
ximal subgroup M of G is modular, then G is nearly 
nilpotent.  

Note that Theorems 1.3 and 1.9 are the basis in 
the proofs of all other results of this paper. In par-
ticular, being based on these results we obtain the 
following result. 

Theorem 1.12. Suppose that G is soluble and 
every n-maximal subgroup of G is nearly S-permu-
table in G. If | ( ) |,n G   then G is strongly super-

soluble and G induces on any its non-Frattini chief 
factor /H K  an automorphism group of order di-
viding 1 ,mp p  where m n  and 1, , mp p  are 

distinct primes. 
The example of the alternating group 4A  of 

degree 4 shows that the restrictions on | ( ) |G  in 

Theorem 1.12 cannot be weakened. 
Corollary 1.13 (See Theorem B in [21]). Sup-

pose that G is soluble and every n-maximal sub-
group M of G is of the form , ,M A B    where A is 

modular and B  is S-permutable in G. If | ( ) |,n G   

then G is strongly supersoluble and G induces on 
any its non-Frattini chief factor /H K  an automor-
phism group of order dividing 1 ,mp p  where 

m n  and 1, , mp p  are distinct primes. 

We prove also the following results. 
Theorem 1.14. Let E be a normal subgroup of 

G and let p be a Sylow p-subgroup of E such that 
( 1,| |) 1.p E   If either all maximal subgroups of p 

are weakly S-permutable in G or every cyclic sub-
group of p of order p and order 4 (if p = 2 and p is 
non-abelian) are weakly S-permutable in G, then E 
is p-nilpotent and / ( )pE O E  is hypercyclically em-

bedded in G. 
Theorem 1.15. Let E be a normal subgroup of 

G. If every cyclic subgroup of E of prime odd order 
is weakly S-permutable in G, then 2/ ( )E O E  is hy-

percyclically embedded in G. 
Theorem 1.16. Let E be a normal subgroup of 

G. Suppose that for any non-cyclic Sylow subgroup 

p of E every maximal subgroup of p or every cyclic 
subgroup of p with prime order and order 4 (in the 
case when p is a non-abelian 2-group) are weakly 
S-permutable in G. Then E is hypercyclically em-
bedded in G. 
 

2 Proofs of the results 
Proof of Theorem 1.3. (i) Suppose that this as-

sertion is false and let G be a counterexample of 
minimal order. 

(1) The group /G R  is  -soluble for every 
minimal normal subgroup R  of G. Hence R  is the 
unique minimal normal subgroup of G and R  is not 
 -primary. Assume that this is false. Then /G R  is 
not nilpotent, so /G R  has a Schmidt subgroup 

/ .H R  Then /H R  is soluble by Lemma 2.12 in 
[15], so .H G  Moreover, from Lemma 2.12 in 
[15] it follows that for every prime p dividing 
| / |H R  and for every Sylow p-subgroup p of /H R  

it follows that p is contained in some 2-maximal 
subgroup of / .G R  Hence R  is contained in some 
3-maximal subgroup of G. Now let 

3 2 1 0/ / / / /M R M R M R M R G R     
be any maximal of G of length 3. Then 

3 2 1 0M M M M G     is a maximal chain in G 

of length 3 and so for some i  the subgroup iM  

nearly  -subnormal in G by hypothesis. But then 
/iM R  is nearly  -subnormal in /G R  by Lemma 

2.11 (1) in [15]. Therefore the hypothesis holds for 
/ ,G R  so the choice of G implies that /G R  is 

 -soluble. Hence the choice of G implies that R  is 
the unique minimal normal subgroup of G and R  is 
not  -primary. Hence Claim (1) holds. 

From Claim (1) it follows that R  is not abe-
lian. Let p be any odd prime dividing | R | and pR  a 

Sylow p-subgroup of R. Let pG  be a Sylow p-sub-

group of G such that .p pR G R   Then 

( ).p G pG N R  Moreover, the Frattini argument im-

plies that ( ).G pG RN R  Hence there is a maximal 

subgroup M  of G such that ( )p G pG N R M   and 

.G RM  Then 1GM M   by Claim (1). 

(2) The subgroup M is not nearly  -subnor-
mal in G. Indeed, suppose that , ,M A B    where A 
is some nearly modular subgroup of G and B is a 
 -subnormal subgroup of G. Suppose that 1,A   
that is, M B  is a  -subnormal subgroup of G. 
Then there is a subgroup chain 

0 1 rM M M M G      
such that either 1i iM M   or 1/ ( )

ii i MM M   is 

 -primary for all 1, , .i r   But M  is a maximal 

subgroup of G and so, in fact, 1rM M   is not nor-

mal in G. Hence / /1GG G M G  is  -primary, 
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so G is  -soluble. This contradiction shows that 
1.A   On the other hand, 1G GA M   and 

/ ( / ).G
G n GA A Z G A  Hence ( )G

nR A Z G   by 

Claim (1). But then R  is abelian since every chief 
factor of G below ( )nZ G  is soluble by Lemma 2.7 

in [15]. This contradiction completes the proof of the 
claim. 

(3) The subgroup D M R   is not nilpotent. 
Hence ( ) D M  and | D | is not a prime power. 

Assume that D is nilpotent. Note that  
,p pR G R M R D      

so pR  a Sylow p-subgroup of D. Then pR  is charac-

teristic in D  and so it is normal in M. Hence 
( ( ))pZ J R  is normal in M. Since 1,GM   it follows 

that ( ( ( )))G pN Z J R M  and so ( ( ( )))R pN Z J R D  

is nilpotent. This implies that R  is p-nilpotent by 
Glauberman-Thompson's theorem on the normal 
p-complements [22, Chapter 8, Theorem 3.1]. But then 
R is a p-group, a contradiction. Hence we have (3). 

(4) .R G  Indeed, suppose that R G  is a 
simple non-abelian group. Let p be a Sylow p-sub-
group of G, where p is the smallest prime dividing 
| G |, and let L be a maximal subgroup of G contain-
ing p. Then, in view of [23, IV, Satz 2.8], | | .P p  

Let V be a maximal subgroup of p. 
If | | ,V p  then p is abelian, so 1 V P L    

by [23, IV, Satz 7.4]. On the other hand, in the case 
when | |V p  we have 1 ,W V P G     where W 

is a maximal subgroup of V. Hence there is a 3-ma-
ximal subgroup E of G such that 1.E   But then 
some proper non-identity subgroup H of G is nearly 
 -subnormal in G by hypothesis. Hence ,H A B    
for some nearly modular subgroup A and some 
 -subnormal subgroup B  of G. Assume that 

1.A   Then 1GA   and ( ).G
nA G Z G   There-

fore G is soluble, a contradiction. 
Therefore 1,A   so H B  is  -subnormal in 

G. Then there is a subgroup chain 

0 1 nH H H H G      
such that either 1i iH H   or 1/ ( )

ii i HH H   is  -pri-

mary for all 1, , .i n   Without loss of generality, 

we can assume that 1 .nM A G   Then 1GM   
since G R  is simple, so /1G G  is  -primary. 
This contradiction shows that we have (4). 

(5) M  is  -soluble. If the identity subgroup 1 
of M  is either maximal or 2-maximal in M, it is 
clear. Now let ,L T M   where L is a maximal 
subgroup of T and T is a maximal subgroup of M. 
Since M  is not nearly  -subnormal in G by Claim 
(2), either L or T is nearly  -subnormal in G and so 
it is nearly  -subnormal in M  by Lemma 2.11 (2) 
in [15]. Hence the hypothesis holds for M, so M  is 
 -soluble by the choice of G. 

(6) ,M D T   where T is a maximal sub-
group of M  of prime order. In view of Claim (3), 
there is a maximal subgroup T of M  such that 

.M DT  Then ( )G RM R DT RT    and so, in 

view of (4), 1.T   Assume that | T | is not a prime 
and let V  be a maximal subgroup of T. Then 1.V   
Since M  is not nearly  -subnormal in G, at least 
one of the subgroups T or V  is nearly  -subnormal 
in G by hypothesis. Claim (5) implies that both sub-
groups V  and T are  -soluble. Consider, for exam-
ple, the case when V  is nearly  -subnormal in G, 
that is, ,V A B    for some nearly modular sub-
group A and some  -subnormal subgroup B  of G. 
Note that B  is also  -soluble, so in the case when 

1B   we get that ( ) 1
i

O V   for some i. But 

( ) ( )
i i

O B O G   by Lemma 2.10 (5) in [15], so 

( ) 1,
i

O G   which implies that R  is  -primary by 

Claim (1), a contradiction. 
Therefore 1,B   that is, V A  is nearly 

modular in G. It is clear that 1GA   and hence 

1 ( ),G G
nA V Z G    which implies that 

( ).nR Z G  But then R  is abelian, a contradiction. 

Hence | T | is a prime, so .M D T   
Final contradiction for (i). Since T is a maxi-

mal subgroup of M and it is cyclic, M is soluble by 
[23, IV, Theorem 7.4] and so | D | is a prime power, 
contrary to Claim (3). Hence Assertion (i) is true. 

(ii) Suppose that this assertion is false and let G 
be a counterexample of minimal order. Then G is 
nether  -nilpotent nor supersoluble but every 
maximal subgroup M  of G is  -nilpotent. Indeed, 
if T is a maximal subgroup of M, then T is  -per-
mutable in G, so T is  -subnormal in G by [1, 
Theorem B]. Hence T is  -subnormal in M  by 
Lemma 2.10 (1) in [15]. Hence every maximal sub-
group of M  is T is  -subnormal in M, so M  is 
 -nilpotent by Proposition 2.3 in [1]. 

Therefore G is an N -critical group, so G is a 

Schmidt group by Lemma 2.13 in [15]. Hence, in 
view of Lemma 2.12 in [15], ,G P Q   where 

P G N  is a Sylow p-subgroup of G and Q x    is 

a cyclic Sylow q-subgroup of G. Moreover, 
( ) ), (qP x G    p is of exponent p or exponent 

4 if p is a non-abelian 2-group and / ( )P P  is a 

non-central chief factor of G. It is clear that 
( )M P Q   is a maximal subgroup of G and p is 

the Hall i -subgroup of G and q is a Hall j -sub-

group of G for some ip  and .jq  Moreover, 
GQ G  since .P G N   

First assume that ( ) 1P   and let V  be a 

maximal subgroup of M  containing q. Then V  is 
2-maximal in G, so it is  -permutable in G. 
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It follows that ,GG Q V G    a contradiction. 

Hence ( ) 1,P   so p is a minimal normal subgroup 

of G and Hence q is a maximal subgroup of G. Since 
G is not supersoluble for a maximal subgroup W of p 
we have 1W   and qW x   is a 2-maximal sub-
group of G. Hence  

,q qW x Q QW x      
which implies that p is not a minimal normal sub-
group of G. This contradiction completes the proof 
of Statement (ii). 

(iii) First note that G is soluble by Part (i). 
Therefore, in view of Proposition 2.18 in [15], we 
need only to show that for every maximal subgroup 
M  of G we have / .G nG M N  

If 1,GM   then the choice of G and Lemma 

2.15 (2) in [15] imply that / .G nG M N  Now as-

sume that 1,GM   so there is a minimal normal 

subgroup R  of G such that G R M   and 
( ) ( )G pR C R O G   for some prime p by [24, Chap-

ter A, Theorem 15.6]. Lemma 2.16 (1) in [15] im-
plies that | |M q  for some prime q and hence R  is 

a maximal subgroup of G. Then, by Lemma 2.16 (2) 
in [15], | | ,R p  which implies that | | .G pq  
Hence / GG G M  is nearly nilpotent, so the State-

ment (iii) holds.                                                                       
Proof of Theorem 1.9. Necessity. First suppose 

that G is not nearly  -nilpotent and every maximal 
chain of length 2 in G includes a proper nearly 
 -subnormal subgroup of G. We show that in this 
case G is a Schmidt group with abelian Sylow sub-
groups. First note that, by Proposition 4.2 in [15], for 
some maximal subgroup M  of G we have 

/ ,G nG M  N  so M  is not nearly  -subnormal in 

G by Lemma 2.11 (5) in [15]. Then every maximal 
subgroup V  of M  is nearly  -subnormal in G by 
hypothesis. Therefore, if M has two different maxi-
mal subgroups V  and W, then ,M V W    is nearly 
 -subnormal in G by Lemma 2.11 (4) in [15], so M  
possesses the unique maximal subgroup and hence 
M is a cyclic Sylow q-subgroup of G for some prime 
q. In view [23, IV, Satz 7.4], G is soluble. 

Suppose that 1GM   and let R  be a minimal 

normal subgroup of G contained in .GM  Then 

( ),R Z G  since ( )GM C R  and M  is a maximal 

subgroup of G which is clearly not normal in G. In 
view of Lemma 2.11 (1) in [15], the hypothesis 
holds for / ,G R  so /G R  is either nearly  -nilpo-
tent or a Schmidt group with abelian Sylow sub-
groups. In the former case we have 

/ ( / ) / ( / )G G nG M G R M R  N  
by Proposition 4.2. But then M  is nearly  -subnor-
mal in G by Lemma 2.11 (6) in [15], contrary to our 
assumption on M, and so we have the second case. 

Therefore, if /V R  is any maximal subgroup of 
/ ,G R  then /V R  is nilpotent and hence V  is nilpo-

tent since ( ).R Z G  Therefore every maximal sub-

group of G containing R  is nilpotent. Note also that 
if for some maximal subgroup V  of G we have 

,G RV  then ( )M R M V   and so 1M V   

since M  is cyclic q-group. But then M R  is nor-
mal in G, a contradiction. Therefore ( ).R G   

Thus G is a Schmidt group. From Lemma 2.12 in 
[15] it follows that / ( / ) ( / ),G R PR R M R   

where: / ( / )P PR R G R G N  is a Sylow p-sub-

group of /G R  and p is a Sylow o-subgroup of G; 
/M R  is a Sylow q-subgroup of / .G R  Therefore 

all Sylow subgroups of G are abelian. 
Now assume that 1.G GM V   Then ,G R M   

where ( )GR C R  is a minimal normal subgroup of 

G [24, Chapter A, Theorem 15.2]. It is clear also that 
.R G N  By hypothesis, V AB  for some nearly 

modular subgroup A and  -subnormal subgroup B  
of G. But since M  is a cyclic Sylow subgroup of G, 
then we have that either V A  or .V B  

First assume that .V A  Then 

( ),G
nRV V Z G   

which implies that /1R  is nearly central in G by 
Lemma 2.7 in [15]. Hence  

| | | || / ( ) | | || / |GG R G C R R G R   
divides pq for some primes p and q. Therefore G is 
either nearly  -nilpotent or a Schmidt group with 
abelian Sylow subgroups.  

Now consider the case when V B  is  -sub-
normal in G. Since G is not nearly  -nilpotent, it is 
not  -primary. Hence, in fact, V B  is subnormal 
in G, then  

1G RM M
GV V V M     

by [24, Chapter A, Theorem 14.3] and so | | ,M q  

which implies that G is a Schmidt group with abe-
lian Sylow subgroups, contrary to our assumption on 
G. This contradiction completes the proof of the 
necessity of the condition of the theorem. 

Sufficiency. If G is nearly  -nilpotent, then 
every maximal subgroup of G is nearly  -sub-
normal in G by Lemma 2.11 (6) in [15]. Finally, if G 
is a Schmidt group with abelian Sylow subgroup, 
then ,G R M   where R  is a minimal normal 

subgroup of G and GM  is the maximal subgroup of 

M  by Lemma 2.12 in [15]. Hence every 2-maximal 
subgroup of G is subnormal and so nearly  -sub-
normal in G.                                                                              

Proof of Theorem 1.12. Assume this theorem is 
false and let G be a counter example of minimal order. 

I. First we show that G is strongly supersolu-
ble. Suppose that this is false. Let R be a minimal 
normal subgroup of G. 
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(1) /G R  is strongly supersoluble. Hence G is 

primitive and so ( )R G  and 

( ) ( )G pR C R O G   

for some prime p. Lemma 2.15 (2) in [15] implies 
that the hypothesis holds for / ,G R  so the choice of 

G implies that /G R  is strongly supersoluble. 
Therefore, again by the choice of G, R  is the unique 
minimal normal subgroup of G and ( )R G  by 

Theorem A in [25]. Hence G is primitive and so 
( ) ( )G pR C R O G   

for some prime p by [24, Chapter A, 15.6]. 
(2) Every maximal subgroup M of G is strongly 

supersoluble. By hypothesis every ( 1)n  -maximal 

subgroup T of M  is nearly S-permutable in G. 
Hence T is nearly S-permutable in M  by Lemma 
2.15 (3) in [15]. Since the solubility of G implies 
that either | ( ) | | ( ) |M G    or | ( ) | | ( ) | 1,M G     

the hypothesis holds for M. It follows that M  is 
strongly supersoluble by the choice of G. 

(3) G is supersoluble. Suppose that this is false. 
Since every maximal subgroup M  of G is strongly 
supersoluble by Claim (2), G is an U -critical group. 
Then Lemma 2.19 (1) in [15] yields that | ( ) | 2G   

or | ( ) | 3.G   But in the former case G is strongly 

supersoluble by Theorem 1.5 (iii), so | ( ) | 3G   and 

every 3-maximal subgroup of G is nearly S-permu-
table in G. Claim (1) and Lemma 2.15 (3) in [15] 
imply that ,G R S   where S is a Miller – Moreno 

group. Moreover, since | ( ) | 2S   and S is strongly 

supersoluble by Claim (2), S is not nilpotent and so 
,S Q T   where | | ,Q q  | |T t  and ( )SC Q Q  

for some distinct primes q and T. Hence R is a 2-ma-
ximal subgroup of G, so every maximal subgroup of 
R  is nearly S-permutable in G. Therefore G is su-
persoluble by Lemma 2.16 (2) in [15]. 

Final contradiction for I. From Claims (1) and 
(3) we get that for some maximal subgroup M  of G 
we have ( )GG R M C R M    and | | ,R p  so 

M  is cyclic. Since G is not strongly supersoluble, 
for some prime q dividing | M | and for the Sylow 
q-subgroup Q of M we have | | .Q q  First assume 

that ,RQ G  and let ,RQ V  where V  is a maxi-

mal subgroup of G. Then V  is strongly supersoluble 
by Claim (2). Hence ( ) 1,QC R   contrary to 

( ).GR C R  Hence RQ G  and so | ( ) | 2.G   

Therefore G is strongly supersoluble by Theorem 
1.3, a contradiction. Thus we have I. 

II. Now we show that G induces on any its 
non-Frattini chief factor /H K  an automorphism 
group / ( / )GG C H K  of order dividing 1 ,mp p  

where m n  and 1, , mp p  are distinct primes. 

 Let M be a maximal subgroup of G such that 
K M  and .MH G  Then 

/ ( / ) ( / ( / ))G GG M H K G C H K   

by Lemma 2.19 in [15]. If 1,GM   the choice of G 

implies that .m n  Now suppose that 1,GM   so 

,G H M   where | H | is a prime and ( ).GH C H  

Then, by Claim I, M is a cyclic group of order divid-
ing 1 mp p  for some distinct primes 1, , .mp p  

Assume that .n m  Then G has an n-maximal sub-
group T such that T M  and | T | is not a prime, 
contrary to Lemma 2.16 (1) in [15]. Thus we have II.  

Proof of Theorem 1.14. Suppose that this theo-
rem is false and consider a counter example ( , )G E  

for which | | | |G E  is minimal. Let ( ).Z Z G n  

(1) If R is a normal p  -subgroup of G, then 

the hypothesis hold for ( / , / ).G R ER R  First note 

that /PR R P  is a Sylow p-subgroup of / ,ER R  

and if /V R  is a subgroup of / ,PR R  then for a Sy-

low p-subgroup W  of V  we have / / .V R WR R  
Moreover, if /V R  is a maximal subgroup of 

/ ,PR R  then | : |P W p  and so W  is a maximal 

subgroup of p. On the other hand, if /V R  is a cy-
clic subgroup of /PR R  of order p or order 4, then 
W  is a cyclic subgroup of p of order p (respectively 
of order 4) since / .W V R  Hence the hypothesis 
folds for ( / , / )G R ER R  by Lemma 2.2 (1) in [26]. 

(2) ( ) 1.pO G   Assume that ( ) 1,pO G   and 

let R  be a minimal normal subgroup of G contained 
in ( ).pO G  Then the hypothesis holds for 

( / , / )G R ER R  by Claim (1), so 

( / ) / ( / )pER R O ER R  
is hypercyclically embedded in /G R  and 

/ / ( )ER R E E R  
is p-nilpotent. Hence E  is p-nilpotent and from  

( / ) / ( / )

( / ) / ( ( ) / )

( / ) / ( ( ) / )

p

p

p

ER R O ER R

ER R O ER R

ER R O E R R









 



 

and from the G-isomorphisms 
( / ) / ( ( ) / ) / ( )

/ ( ( ) )

/ ( )( ) / ( )

p p

p

p p

ER R O E R R ER O E R

E E O E R

E O E E R E O E

 



 

 

  

 
  

we get that / ( )pE O E  is hypercyclically embedded in 

G, contrary to the choice of ( , ).G E  Hence we have (2). 

(3) ( ).Z E Z E   Indeed, since Z  is clearly 

supersoluble, a Sylow q-subgroup q of Z, where q is 
the largest prime dividing | Z |, is normal and so 
characteristic in Z. Then q is normal in G, which 
implies that Z Q  by Claim (2), so ( )Z E Z E   

since ( 1,| |) 1.p E    

(4) E is p-nilpotent. Assume that this is false.  
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(a) .E G  Since the hypothesis holds for ( , )E E  

by Lemma 2.2 (2) in [26], in the case when ,E G  
the subgroup E is p-nilpotent by the choice of G. 

(b) Every cyclic subgroup of p of order p  and 
order 4 are m-S-supplemented in G. It is enough to 
show that some maximal subgroup of p is not 
m-S-supplemented in G. Suppose that this is false. 

First we show that ( ) 1.pO G   Assume that 

( ) 1.pO G   Let V  be a maximal subgroup of p. 

There are a nearly S-permutable subgroup S and a 
subgroup T of G such that G VT  and 

.V T S V    Let A be a nearly modular subgroup 
and B  an S-permutable subgroup of G such that 

, .S A B    Then x x xBP P B P   for all ,x G  so 

( ) 1.G pB P O G    Hence S A  and 1,GA   the-

refore ( )S Z Z G   by Lemma 2.4 in [26] and 

Claim (3) since E G  by Claim (a). Since ( )Z G  

is nilpotent, a Sylow p-subgroup of ( )Z G  is nor-

mal in G, so 1A S   since 1.GV   Therefore T is 

a complement to V  in G, so for a Sylow p-subgroup 

pT  of T we have  | | .pT p  Therefore T is p-nilpo-

tent since ( 1,| |) ( 1,| |) 1.p E p G     Hence every 

maximal subgroup V  of p has a p-nilpotent com-
plement in G, so G is p-nilpotent by Lemma 2.13 in 
[26]. This contradiction shows that ( ) 1.pO G    

Let R  be a minimal normal subgroup of G 
contained in ( ).pO G  First we show that .R P  As-

sume that R P  and let V  be any maximal sub-
group of R. There are a nearly S-repmutable sub-
group S and a subgroup T of G such that G VT  
and .V T S V    Let A be a nearly modular sub-
group and B  an S-permutable subgroup of G such 
that , .S A B    Then 1,GA   so GA Z  by Lemma 

2.4 in [26]. Therefore 1A   and so S B  is S-per-
mutable in G. But then S is normal in G by Lemma 
1.2.16 in [27]. Hence 1S   and so 1.T V   But 
then 1 ,T R R    where T R  is normal in G. 
This contradiction shows that .R P  Therefore the 
hypothesis holds for / ,G R  so /G R  is p-nilpotent. 
Hence G is p-soluble. Therefore every minimal 
normal subgroup R  of G is a p-group by Claim (2), 
hence R  is a unique minimal normal subgroup of G 
and ( ),R G  so ( ) ( )G pR C R O G   by [24, 

Chapter A, Theorem 15.6]. It is clear also that 
| | ,R p  so 1.Z   

Let V  be a maximal subgroup of p such that 
.RV P  Then W V R   is normal in p, 

| : |P W p  and 1.GV   There are a nearly S-permu-

table subgroup S and a subgroup T of G such that 
G VT  and .V T S V    Arguing as above, we 
can show that S is S-permutable in G. It follows that 

( ) .pS O G R   Hence S R V W    and so 

( )pG PO G WS S S W    by [27, Lemma 1.2.16], 
which implies that 1.S   Then T is a complement to 
V  in G, so T is p-nilpotent.  

Now let V  be any maximal subgroup of p con-
taining R, and let M  be a maximal subgroup of G 
such that .G R M   Then /M G R  is p-nilpo-
tent, so M  is a p-nilpotent supplement to V  in G. 
Thus every maximal subgroup of p has a p-nilpotent 
supplement in G. Therefor G is p-nilpotent by 
Lemma 2.13. This contradiction shows that some 
maximal subgroup of p is not weakly S-permutable 
in G, so we have (b) by hypothesis.  

Final contradiction for (4). Since G is not 
p-nilpotent, it has a non-nilpotent subgroup H such 
that every  proper subgroup of H is nilpotent by [23, 
IV, Satz 5.4]. Moreover, Proposition 1.9 in [29, 
Chapter 1] implies that ,p qH H H   where pH  is 

a Sylow p-subgroup and qH  is a Sylow q-subgroup 

of H for some prime q p  and the following hold: 

(i) pH  is of exponent p or exponent 4 (if 2p   and 

pH  is non-abelian); (ii) pH  is the smallest normal 

subgroup  of H with nilpotent  quotient  / ;pH H  

(iii) / ( )p pH H  is a chief factor of H. Then 

( / ( ))H p pC H H H   since / ( )pH H  is not nil-

potent. Therefore | / ( ) |p pH H p   since clearly 

( 1,| |) 1.p H   Lemma 2.2 (2) in [26] and Claim 

(b) imply that every cyclic subgroup of pH  of order 

p and order 4 are weakly S-permutable in H. On the 
other hand, Property (i) implies that ( )p pH H   

and so pH  is hypercyclically embedded in H by 

Lemma 2.12 in [26] and so | / ( ) | .p pH H p   This 

contradiction completes the proof of (4).  
The final contradiction. Claims (2) and (4) im-

ply that E P  is a normal p-subgroup of G. Let 
( ),D C   where C  is a Thompson critical sub-

group of E. If ,D E  then D  is hypercyclically 

embedded in G by the choice of ( , )G E  and so in 

this case E  is hypercyclically embedded in G by 
Lemma 2.11 in [26]. Therefore D E  and so E  is 
hypercyclically embedded in G by Lemma 2.12 in 
[26]. This final contradiction completes the proof of 
the result.                                                                   

Proof of Theorem 1.15. Suppose that this theo-
rem is false and consider a counterexample ( , )G E  

for which | | | |G E  is minimal.  

First we show that E is 2 -supersoluble and so 
E is soluble. Assume that this is false.  

(a) .E G  Hence every proper subgroup of G 
is 2 -supersoluble. Indeed, the hypothesis holds for 
( , )E E  by Lemma 2.2 (2) in [26], so in the case when 

E G  the choice of ( , )G E  implies that 2/ ( )E O E  
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is supersoluble and hence E  is 2 -supersoluble, 
contrary to our assumption on E. Hence ,E G  so 
we have (a) by Lemma 2.2 (2) in [26]. 

(b) G is soluble. Assume that this is false and 
let ( ).F F G  Then ( )F G   since otherwise G is 

soluble by Claim (a). Moreover, /G F  is a non-
abelian simple group and every maximal subgroup 
of /G F  is soluble. Therefore, in view of [28], 

/G F  is isomorphic with some of the following 
groups: 2 ( ),PSL p  where 3p   is a prime such that 

2 1 0(5);p    2 (3 ),pPSL  where p is an odd prime; 

2 (2 ),pPSL  where p is a prime; 3 (3);PSL  Suzuki 

group (2 ),pSz  where p is an odd prime. 

Let r  be the largest prime dividing | / |G F  

and let rG  be a Sylow r-subgroup of G. Then 3r   

by the Burnside a bp q -theorem. Let p r  be any 

odd prime dividing | / |G F  and let pC  be a sub-

group of G of order p. We show that .pC F  Sup-

pose that this is false. By hypothesis, pC  is weakly 

S-permutable in G. First assume that pC  is nearly 

S-permutable in G. Then there is a proper subgroup 
T of G such that pC T G  and 1.pC T   Hence 

| : | ,G T p  so T is a maximal subgroup of G. By 

considering the permutation representation of / GG T  

on the right coset of / GT T  one can see that / GG T  

is isomorphic with some subgroup of the symmetric 
group pS  of degree p. Since T is a maximal sub-

group of G, ( ) .F G T   Hence ,GT F  so 

.p r  This contradiction shows that for every prime 

2 p r   dividing | / |,G F  every subgroup pC  of 

G of order p with pC F  is nearly S-permutable in 

G. Then pC  is either nearly modular or nearly S-per-

mutable in G. Moreover, pC  is not normal in G, so 

in the former case we have ( )G
pC  is hypercyclically 

embedded in G by Lemma 2.4 in [26] and hence 
( ) / /G

pC F F G F  is soluble. This contradiction 

shows that pC  is S-permutable in G, so ( )p pC O G  

and hence ( )pG FO G  is soluble. This contradic-

tion completes the proof of the fact that .pC F  

 Let P be a Sylow p-subgroup of F. Then p is 
characteristic in F  and so it is normal in G. Let 

( )x
rR G  for some .x G  Then ,V P R G   so 

V  is supersoluble by Claim (a). But then V P R   

since ,r p  so ( ).GR C P  But then ( ) ( ).G
r GG C P  

Since r  divides | / |,G F  ( )G
rG F  and hence 

( ) ( ) ( ) ( ) .G G G
r r rG G F G G G    

Therefore ( )P Z G  and ( ) .P G F   Now let 

W  be a Hall p -subgroup of F. Then 

/ ( / )PW W Z G W  and / ( / )PW W G W  
and so p divides | ( / ) |,M G F  where ( / )M G F  is 

the Schur multiplicator of / .G F  But 
(| ( / ) |) {2,3}M G F   

(see [29, Chapter 4]). Therefore 3p   since 2p   

and so ( / ) {2,3, }.G F r   But from the above we 

also know that /G F  is a minimal non-soluble 
group, so from [29, Chapter 4] we deduce that the 
Schur multiplicator of /G F  is of order 2. This con-
tradiction completes the proof of the fact that G is 
soluble. 

Let p be any odd prime. We show that G is 
p-supersoluble. Suppose that this is false. Then p 
divides G  and G is a minimal non-p-supersoluble 

group. 
It is well-known that the class of all p-super-

soluble groups F  is a saturated formation. Hence G 

has a normal subgroup D  such that /G D  is p-su-
persoluble and D  is a q-group for some prime q. It 
is clear that ,q p  so D  is hypercyclically embed-

ded in G by Theorem 1.14. Hence G is p-superso-
luble. This contradiction completes the proof of the 
fact that E  is 2 -supersoluble.  

Let 1{ , }np p  be the set of all odd primes di-

viding .E  Then 
1 2( ) ( ) ( ).

np pO E O E O E
 

    

On the other hand, / ( )
ipE O E


 is supersoluble by 

Theorem 1.14 for all 1, , ,i n   so 2/ ( )E O E  is 

supersoluble. Assume that 2 ( ) 1.O E   The subgroup 

2 ( )O E  is characteristic in E, so it is normal in G. 

The hypothesis holds for 2 2( / ( ), / ( ))G O E E O E  by 

Lemma 2.2 (1) in [26], so the choice of ( , )G E  im-

plies that 2/ ( )H O E  is hypercyclically embedded in 

2/ ( ),G O E  so 2/ ( )E O E  is hypercyclically embed-

ded in G. Therefore 2 ( ) 1,O E   so E is supersoluble. 

Now let qE  be a Sylow q-subgroup of E, 

where q is the largest prime dividing .E  Then qE  

is characteristic in E, so qE  is normal G. The hy-

pothesis holds for ( , )qG E  and ( / , / )q qG E E E  by 

Lemma 2.2 (1) in [26], so in the case when ,qE E  

qE  and / qE E  are hypercyclically embedded in G. 

But then E is hypercyclically embedded in G, contra-
ry to the choice of ( , ).G E  Hence ,qE E  so E  is 

hypercyclically embedded in G by Theorem 1.14. This 
final contradiction completes the proof of the result. 

Proof of Theorem 1.16. Suppose that this theo-
rem is false and consider a counterexample ( , )G E  for 

which | | | |G E  is minimal. Let p be the least prime 

dividing E  and let p be a Sylow p-subgroup of E. 
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Note that the hypothesis holds for ( , )E E  by 

Lemma 2.2 (2) in [26], so E  is p-supersoluble by 
Theorem 1.14 and hence E  is p-nilpotent since p is 
the least prime dividing .E  Note also that if X  is a 

non-identity Hall subgroup of E, then .X E  In-
deed, the hypothesis holds for ( / , / )G X E X  and for 

( , )G X  by Lemma 2.2 (1) in [26]. Hence in the case 

X E  the choice of G implies that /E X  and X  
are hypercyclically embedded in G. Hence E  is 
hypercyclically embedded in G by the Jordan-
Hölder theorem for the chief series. This contradic-
tion shows that ,E P  so E  is hypercyclically em-
bedded in G by Theorem 1.14. The theorem is 
proved. 
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