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Ha npoTsbkeHHHN Beell cTaThU BCe TPYIIEI KOHEUHBL, 1 G Beeraa 0003Ha4aeT KOHSUHYIO IPyIy. MBI TOBOpHM, 4TO moArpymma A

u3 G noutn monyibHa B G, ecin 4 Hopmanbha B G uni H; # HY u xaxnbiit rasubiit dakrop H /K rpynnst G mexay H,

u HC spnsercs noutu nentpanbheM B G, To ecth | H /K || GC,(H / K)| nenut pg uisl HEKOTOPBIX TIPOCTBIX YUCEN p 1 ¢. Mbl

TOBOPHM, YTO HOArpymna 4 rpymisl G sBisieTcs:
(1) noumu o -cy6nopmanvrou 8 G, ecmu A=(L,T), rae L sBiseTcs NOYTH MOAYIbHOI moArpynmoi u T sIBIseTcst G -CyOHOp-

MaJIbHOM noarpynmnoii B G;
(i) noumu o -nepecmanosounoii 8 G, ecmu A=(L,T), tae L — noytn MoxyjbHas NOArpynmna u 7 SBISETCS G -IEPeCcTaHo-

BOYHOI noarpynmoii G.
(iii) crabo o -nepecmanogounoii B8 G, ecnu B G UMeeTCs MOYTH G -IIePecTaHOBOYHAS MOATPpYyIIa S u HoArpymnma 7 Taxas, 4To

G=HT u HNhNT<S<H.
B nanHOI cTaThe M3y4aloTCsl KOHEUHbIE TPYIIIBI C HEKOTOPHIMH CHCTEMaMHU IIOYTH G -CyOHOPMAJbHBIX, HOUYTH G -IIEPECTaHO-
BOYHBIX U 1200 G -IIepeCcTaHOBOYHBIX MOATpyHIl. OG00IEHB! HEKOTOPEIE U3BECTHBIE Pe3yIbTaThL.

Knroueevie cnosa: xoneunas epynna, n-mMakcumailvHas nm)zpynna, noimu © -cyﬁnopma.abnaﬂ nodzpynna, noumu G -nepecma-
HOoBO4YHaA nodepynna, noymu G -HUlbNOMeHmMHAs cpynna.

Throughout this paper, all groups are finite and G always denotes a finite group. We say that a subgroup A of G is nearly modu-
lar in G if either 4 is normal in G or H, # H® and every chief factor H /K of G between H, and H is nearly central in G,
thatis, |H/K||G/C;(H /K)| divides pg for some primes p and g. We say that a subgroup 4 of G is:

(i) nearly o -subnormalin G if A=(L,T), where L is a nearly modular subgroup and 7'is a ¢ -subnormal subgroup of G;

(ii) nearly o -permutable in G if A=(L,T), where L is a nearly modular subgroup and T is a ¢ -permutable subgroup of G.
(iil) weakly o -permutable in G if there are a nearly o -permutable subgroup S and a subgroup 7 of G such that G = HT and
HNT<S<H.

In the given paper, we study finite groups with some systems of nearly o -subnormal, nearly o -permutable and weakly
o -permutable subgroups. Some known results are generalized.

Keywords: finite group, n-maximal subgroup, nearly o -subnormal subgroup, nearly o -permutable subgroup, c -nearly nil-
potent group.
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1 The concepts and results We say that a chief factor H /K is: o -central

Throughout this paper, all groups are finite and inGif |H/K|G/C,(H/K)| is o -primary; near-
G always denotes a finite group.

We say that: a chief factor H/K of G is .
nearly central in G.

nearly central in G if |H/K|[|G/Cs(H/K)| di- A set ‘H of subgroups of G is a complete Hall

vides pg for some primes p and ¢; a subgroup H of o -set of G [2], [3] if every member #1 of H is a
G is nearly modular in G if either 4 is normal in G Hall o, -subgroup of G for some o, €c and M

or H,# H® and every chief factor of G between

ly o-central in G if H/K is either o -central or

contains exactly one Hall o, -subgroup of G for all i;

G - .
H; and H” is nearly central in G. G is said to be o -full if G possesses a complete Hall

In what follows, o is some partition of P [1], o -set.
that is, o={c,|iel}, where P=Uoc, and A subgroup 4 of G is called [1]: © -subnormal

iel . . . .
o,nG, =@ forall i # j. in G [1] if there is a subgroup chain
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A=4, <A <24 =G
such that either 4_, <4 or 4,/(4._,), is o-pri-
mary for all i=1,...,t; o -permutable in G if G is
o -full and 4 permutes with all Hall o, -subgroups
of G for all 7.

The o -subnormal and o -permutable sub-
groups proved to be very useful and found many
applications in the study of various classes of gener-
alized solvable groups (see, for example, the papers
[1]-[13]). In this paper, we consider the following
generalizations of these two concepts.

Definition 1.1. We say that a subgroup 4 of G is:

(i) nearly o -subnormal (respectively nearly
subnormal) in G if A=(L,T), where L is a nearly
modular subgroup and T is a o -subnormal (respec-
tively subnormal) subgroup of G;

(i1) nearly o -permutable (respectively nearly
S-permutable) in G if 4 =(L,T), where L is a nearly
modular subgroup and 7 is a ¢ -permutable (respec-
tively an S-permutable) subgroup of G;

(iil) weakly o -permutable (respectively
weakly S-permutable) in G if there are a nearly
o -permutable (respectively a nearly S-permutable)
subgroup S and a subgroup 7 of G such that
G=HT and HNT<S<H.

Example 1.2. Let p, g, r, t be distinct primes,
where ¢ divides p—1 and T divides r—1. Let
V=0xC,, where g is a simple F C,-module
which is faithful for C, C, xC, a non-abelian group
of order rt.

(i) Let G=(OxC,)x(C,xC,). Let B be a
subgroup of order g in ¢g. Then B < Q since p >gq.
Let H =(C, ,B). Then 4 is nearly modular in G, so
H is nearly subnormal in G. Assume that H is nearly
modular in G. Then B=HnN(QxC,) is nearly

modular in (OxC,) by Lemma 2.8 (4) in [15].

Hence ¢ is cyclic. This contradiction shows that H is
not nearly modular in G. Similarly, if H is subnor-
mal in G, then C,=H N (C, xC,) is subnormal in

C xC, and so C, is normal in C, xC,. But then
C_xC, is abelian. This contradiction shows that A
is not subnormal in G.

(ii) Now, let p be a simple F V' -module which
is faithful for V' and G =(Px(QxC,))x(C,xC,).
Since ¢ divides p—1, pq is supersoluble. Hence for

some normal subgroup B of pg we have 1< B < P.
Then for every Sylow p-subgroup G, of G we have

B<P<G,, so BG,=G,=G,B. On the other
hand, for every Sylow g-subgroup O of G we have
0" <PQ, so BO"=0Q'B. Hence B is S-permu-
table in G. It is clear that C, is nearly modular in G.
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Then H =(A4,B) is nearly S-permutable in G.
Moreover, H is neither nearly modular nor S-per-
mutable in G.

We say that G is: nearly o -nilpotent if every
non-frattini chief factor H/K of G (that is,
H/K % ®(G/K)) is nearly o-central in G,

srtongly supersoluble if G is supersoluble and G
induces on any its chief factor A /K an automor-
phism group of square free order.

Recall that if

M, <M,  <..<M <M,=0G, (1.1)

where M, is a maximal subgroup of M, for all
i=1,...,n, then the chain (1.1) is said to be a maxi-
mal chain of G of length n and M, (n>0), is an
n-maximal subgroup of G.

Our first observation is the following

Theorem 1.3. (i) If in every maximal chain
M, <M, <M <M,=G of G, of length 3, at least
one of the subgroups M,, M,, or M, is nearly

o -subnormal in G, then G is & -soluble.

(i1) If every 2-maximal subgroup of G is
o -permutable, then G is either o -nilpotent or su-
persoluble.

(iii) If every 2-maximal subgroup of G is nearly
S-permutable in G, then G is a nearly nilpotent
group. Hence G is strongly supersoluble.

Corollary 1.4 (Spencer [16]). If in every maxi-
mal chain M, <M, <M, <M,=G of G, of length
3, at least one of the subgroups M, M,, or M, is
subnormal in G, then G is soluble.

Corollary 1.5 (Agrawal [17]). If every 2-maxi-
mal subgroup of G is S-permutable in G, then G is
supersoluble.

Corollary 1.6 (Huppert [18]). If every 3-maxi-

mal subgroup of G is normal in G, then G is soluble.
Corollary 1.7 (Guo, Skiba in [13]). If in every

maximal chain M, <M, <M, <M,=G of G, of
length 3, at least one of the subgroups M,, M,, or
M, is o -subnormal in G, then G is G -soluble.

A subgroup M of G is called modular if M is
a modular element (in the sense of Kurosh [19, 2,
p. 43]) of the lattice £(G) of all subgroups of G,
that is,

1) (X, MnZ)y=(X,M)nZ for all X <G,
Z <G suchthat X <Z, and

(i) M,YNnZ)y=(M,YynZ for all Y <G,
Z <G suchthat M < Z.

From Theorem 5.2.5 in [19] it follows that
every modular subgroup of G is also nearly modular
in G. Hence we get from Theorem 1.3 (iii) the fol-
lowing known result.

Corollary 1.8 (Schmidt [20]). If every 2-maxi-
mal subgroup M of G is modular, then G is nearly
nilpotent.
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Theorem 1.9. Suppose that G is not o -nilpo-
tent. Then every maximal chain of length 2 in G in-
cludes a proper nearly & -subnormal subgroup of G
if and only if G is either nearly o -nilpotent or a
Schmidt group (that is, a non-nilpotent group all of
which subgroups are nilpotent) with abelian Sylow
subgroups.

In the case when o = {{2},{3},...} we get from

Theorem 1.9 the following known results.

Corollary 1.10 (See Theorem A in [21]). Sup-
pose that G is not nilpotent. Then every maximal
chain of length 2 in G includes a proper subgroup H
of G of the form M ={A,B), where A is modulart
and B is subnormal in G, if and only if G is either
nearly nilpotent or a Schmidt group with abelian
Sylow subgroups.

Corollary 1.11 (Schhmidt [20]). If every 2-ma-
ximal subgroup M of G is modular, then G is nearly
nilpotent.

Note that Theorems 1.3 and 1.9 are the basis in
the proofs of all other results of this paper. In par-
ticular, being based on these results we obtain the
following result.

Theorem 1.12. Suppose that G is soluble and
every n-maximal subgroup of G is nearly S-permu-
table in G. If n<|n(G)|, then G is strongly super-
soluble and G induces on any its non-Frattini chief
factor H/ K an automorphism group of order di-
viding p,---p,, where m<n and p,...,p, are
distinct primes.

The example of the alternating group A4, of
degree 4 shows that the restrictions on |n(G)| in
Theorem 1.12 cannot be weakened.

Corollary 1.13 (See Theorem B in [21]). Sup-
pose that G is soluble and every n-maximal sub-
group M of G is of the form M =(A,B), where A is
modular and B is S-permutable in G. If n <|n(G) |,

then G is strongly supersoluble and G induces on
any its non-Frattini chief factor H/ K an automor-
phism group of order dividing p,---p,, where

m<n and p,,...,p, are distinct primes.

We prove also the following results.

Theorem 1.14. Let E be a normal subgroup of
G and let p be a Sylow p-subgroup of E such that
(p—-L| E|)=1. If either all maximal subgroups of p
are weakly S-permutable in G or every cyclic sub-
group of p of order p and order 4 (if p =2 and p is
non-abelian) are weakly S-permutable in G, then E
is p-nilpotent and E /O, (E) is hypercyclically em-
bedded in G.

Theorem 1.15. Let E be a normal subgroup of
G. If every cyclic subgroup of E of prime odd order
is weakly S-permutable in G, then E/O,(E) is hy-
percyclically embedded in G.

Theorem 1.16. Let E be a normal subgroup of
G. Suppose that for any non-cyclic Sylow subgroup
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p of E every maximal subgroup of p or every cyclic
subgroup of p with prime order and order 4 (in the
case when p is a non-abelian 2-group) are weakly
S-permutable in G. Then E is hypercyclically em-
bedded in G.

2 Proofs of the results

Proof of Theorem 1.3. (i) Suppose that this as-
sertion is false and let G be a counterexample of
minimal order.

(1) The group G/R is o -soluble for every
minimal normal subgroup R of G. Hence R is the
unique minimal normal subgroup of G and R is not
G -primary. Assume that this is false. Then G/R is
not nilpotent, so G/R has a Schmidt subgroup
H/R. Then H/R is soluble by Lemma 2.12 in
[15], so H <G. Moreover, from Lemma 2.12 in
[15] it follows that for every prime p dividing
| H/ R | and for every Sylow p-subgroup p of H/R
it follows that p is contained in some 2-maximal
subgroup of G/R. Hence R is contained in some
3-maximal subgroup of G. Now let

M,/R<M,/R<M /R<M;,/R=G/R
be any maximal of G of length 3. Then
M, <M, <M <M,=G is a maximal chain in G
of length 3 and so for some i the subgroup M,
nearly & -subnormal in G by hypothesis. But then
M, /R isnearly o -subnormal in G/R by Lemma
2.11 (1) in [15]. Therefore the hypothesis holds for
G/R, so the choice of G implies that G/R is
o -soluble. Hence the choice of G implies that R is
the unique minimal normal subgroup of G and R is
not o -primary. Hence Claim (1) holds.

From Claim (1) it follows that R is not abe-
lian. Let p be any odd prime dividing | R [ and R, a

Sylow p-subgroup of R. Let G, be a Sylow p-sub-
R,=G,NR. Then

G, < N;(R,). Moreover, the Frattini argument im-

group of G such that

plies that G = RN;(R,). Hence there is a maximal
subgroup M of G such that G, < N,(R,)<M and
G=RM. Then M # M, =1 by Claim (1).

(2) The subgroup M is not nearly o -subnor-

mal in G. Indeed, suppose that M = (A4, B), where 4

is some nearly modular subgroup of G and B is a
o -subnormal subgroup of G. Suppose that A4 =1,

that is, M =B is a o -subnormal subgroup of G.
Then there is a subgroup chain
M=M,<M<---<M =G

such that either M, IM, or M,/(M_), Iis
o -primary for all i=1,...,». But M is a maximal
subgroup of G and so, in fact, M =M, is not nor-
mal in G. Hence G=G/M,=G/1 is o -primary,
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so G is o -soluble. This contradiction shows that
A#1. On the other hand, A4;<M; =1 and

A°/A;<Z, (G| A;). Hence R<A° <Z, (G) by
Claim (1). But then R is abelian since every chief
factor of G below Z,_ (G) is soluble by Lemma 2.7
in [15]. This contradiction completes the proof of the
claim.

(3) The subgroup D =M N R is not nilpotent.
Hence D £ ®(M) and | D| is not a prime power.
Assume that D is nilpotent. Note that

R,=G,NR<MnNR=D,

so R, a Sylow p-subgroup of D. Then R, is charac-

teristic in D and so it is normal in M. Hence
Z(J(R,)) is normal in M. Since M =1, it follows
that N;(Z(J(R))) =M andso N (Z(J(R))) =D
is nilpotent. This implies that R is p-nilpotent by
Glauberman-Thompson's theorem on the normal
p-complements [22, Chapter 8, Theorem 3.1]. But then
R is a p-group, a contradiction. Hence we have (3).

(4) R<G. Indeed, suppose that R=G is a
simple non-abelian group. Let p be a Sylow p-sub-
group of G, where p is the smallest prime dividing
| G|, and let L be a maximal subgroup of G contain-
ing p. Then, in view of [23, IV, Satz 2.8], | P> p.
Let V' be a maximal subgroup of p.

If |V |= p, then p is abelian, so 1<V <P<L
by [23, IV, Satz 7.4]. On the other hand, in the case
when |V |> p wehave 1<W <V < P<G, where W
is a maximal subgroup of V. Hence there is a 3-ma-
ximal subgroup E of G such that E #1. But then
some proper non-identity subgroup H of G is nearly
o -subnormal in G by hypothesis. Hence H =(4, B)
for some nearly modular subgroup 4 and some
o -subnormal subgroup B of G. Assume that
A#1. Then 4,=1 and 4° =G<Z, (G). There-
fore G is soluble, a contradiction.

Therefore A=1, so H =B is ¢ -subnormal in
G. Then there is a subgroup chain

H=H,<H <---<H =G
such that either H, , <H, or H,/(H, ), is o -pri-

mary for all i=1,...,n. Without loss of generality,
we can assume that M =4 ,<G. Then M, =1
since G=R is simple, so G=G/1 is o -primary.
This contradiction shows that we have (4).

(5) M is o -soluble. If the identity subgroup 1
of M is either maximal or 2-maximal in M, it is
clear. Now let L <T <M, where L is a maximal
subgroup of 7 and T is a maximal subgroup of M.
Since M is not nearly o -subnormal in G by Claim
(2), either L or T is nearly & -subnormal in G and so
it is nearly o -subnormal in M by Lemma 2.11 (2)
in [15]. Hence the hypothesis holds for M, so M is
o -soluble by the choice of G.
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(6) M =DxT, where T is a maximal sub-
group of M of prime order. In view of Claim (3),
there is a maximal subgroup 7 of M such that
M =DT. Then G=RM =R(DT)=RT and so, in
view of (4), T #1. Assume that | 7’| is not a prime
and let V' be a maximal subgroup of 7. Then V #1.
Since M is not nearly & -subnormal in G, at least
one of the subgroups 7 or V' is nearly o -subnormal
in G by hypothesis. Claim (5) implies that both sub-
groups V' and T are o -soluble. Consider, for exam-
ple, the case when V' is nearly o -subnormal in G,
that is, V' =(A4,B) for some nearly modular sub-
group A and some o -subnormal subgroup B of G.
Note that B is also o -soluble, so in the case when
B#1 we get that O, (V)#1 for some i But

0, (B)<0O, (G) by Lemma 2.10(5) in [15], so
0, (G) #1, which implies that R is o -primary by

Claim (1), a contradiction.
Therefore B =1, that is, V=4 is nearly

modular in G. It is clear that A, =1 and hence
1<A4°=V°<Z_ (G), which

no

R<Z _(G). Butthen R is abelian, a contradiction.
Hence | 7| is a prime, so M = DxT.

Final contradiction for (i). Since T is a maxi-
mal subgroup of M and it is cyclic, M is soluble by
[23, IV, Theorem 7.4] and so | D | is a prime power,
contrary to Claim (3). Hence Assertion (i) is true.

(i1) Suppose that this assertion is false and let G
be a counterexample of minimal order. Then G is
nether o -nilpotent nor supersoluble but every
maximal subgroup M of G is o -nilpotent. Indeed,
if T is a maximal subgroup of M, then T is o -per-
mutable in G, so T is o -subnormal in G by [1,
Theorem B]. Hence T is o -subnormal in M by
Lemma 2.10 (1) in [15]. Hence every maximal sub-
group of M is T is o -subnormal in M, so M is
o -nilpotent by Proposition 2.3 in [1].

Therefore G is an 91_ -critical group, so G is a

implies  that

Schmidt group by Lemma 2.13 in [15]. Hence, in
view of Lemma 2.12 in [15], G=PxQ, where

P=G" is a Sylow p-subgroup of G and Q =(x) is
a cyclic Sylow g-subgroup of G. Moreover,
O (P)x?) < ®(G), p is of exponent p or exponent
4 if p is a non-abelian 2-group and P/®(P) is a
non-central chief factor of G. It is clear that
M =®(P)Q is a maximal subgroup of G and p is

the Hall o, -subgroup of G and g is a Hall o, -sub-
group of G for some p e, and g € ;. Moreover,
0° =G since P=G".

First assume that ®(P)=1 and let V' be a

maximal subgroup of M containing ¢g. Then V' is
2-maximal in G, so it is o -permutable in G.
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It follows that G=Q% <V <G, a contradiction.
Hence @ (P) =1, so p is a minimal normal subgroup
of G and Hence ¢q is a maximal subgroup of G. Since
G is not supersoluble for a maximal subgroup W of p
we have W #1 and W{x?) is a 2-maximal sub-
group of G. Hence
W{x"YQ =Q0W({x"),

which implies that p is not a minimal normal sub-
group of G. This contradiction completes the proof
of Statement (i1).

(iii) First note that G is soluble by Part (i).
Therefore, in view of Proposition 2.18 in [15], we
need only to show that for every maximal subgroup
M of Gwehave G/ M;eMN,.

If M, #1, then the choice of G and Lemma
2.15(2) in [15] imply that G/ M, €*N,. Now as-
sume that M, =1, so there is a minimal normal
subgroup R of G such that G=RxM and
R=C;(R)=0,(G) for some prime p by [24, Chap-
ter A, Theorem 15.6]. Lemma 2.16 (1) in [15] im-
plies that | M |= g for some prime ¢ and hence R is
a maximal subgroup of G. Then, by Lemma 2.16 (2)
in [15], |R|=p, which implies that |G |= pq.
Hence G =G /M, is nearly nilpotent, so the State-
ment (iii) holds. O

Proof of Theorem 1.9. Necessity. First suppose
that G is not nearly o -nilpotent and every maximal
chain of length 2 in G includes a proper nearly
o -subnormal subgroup of G. We show that in this
case G is a Schmidt group with abelian Sylow sub-
groups. First note that, by Proposition 4.2 in [15], for
some maximal subgroup M of G we have
G/M;¢MN, , so M isnotnearly c-subnormal in
G by Lemma 2.11 (5) in [15]. Then every maximal
subgroup V' of M is nearly o -subnormal in G by
hypothesis. Therefore, if M has two different maxi-
mal subgroups V' and W, then M =(V,W) is nearly
o -subnormal in G by Lemma 2.11 (4) in [15], so M
possesses the unique maximal subgroup and hence
M is a cyclic Sylow g-subgroup of G for some prime
q. In view [23, IV, Satz 7.4], G is soluble.

Suppose that M, #1 and let R be a minimal

nc?

normal subgroup of G contained in M. Then
R<Z(G), since M <C,(R) and M is a maximal
subgroup of G which is clearly not normal in G. In
view of Lemma 2.11 (1) in [15], the hypothesis
holds for G/R, so G/R is either nearly o -nilpo-
tent or a Schmidt group with abelian Sylow sub-
groups. In the former case we have
G/M;=(G/R)/(M;/R)eM,
by Proposition 4.2. But then M is nearly o -subnor-

mal in G by Lemma 2.11 (6) in [15], contrary to our
assumption on M, and so we have the second case.
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Therefore, if V' /R is any maximal subgroup of
G /R, then V' /R is nilpotent and hence V' is nilpo-
tent since R < Z(G). Therefore every maximal sub-
group of G containing R is nilpotent. Note also that
if for some maximal subgroup ¥ of G we have
G=RV, then M =R(M V) and so M NV =1
since M is cyclic g-group. But then M =R is nor-
mal in G, a contradiction. Therefore R < ®(G).

Thus G is a Schmidt group. From Lemma 2.12 in
[15] it follows that G/R=(PR/R)x(M/R),

where: P=PR/R=(G/R)G™ is a Sylow p-sub-
group of G/R and p is a Sylow o-subgroup of G;
M /R is a Sylow g-subgroup of G/R. Therefore

all Sylow subgroups of G are abelian.

Now assume that M, =V_.=1. Then G=RxM,
where R =C,;(R) is a minimal normal subgroup of
G [24, Chapter A, Theorem 15.2]. It is clear also that
R=G". By hypothesis, ¥ = AB for some nearly
modular subgroup 4 and o -subnormal subgroup B
of G. But since M is a cyclic Sylow subgroup of G,
then we have that either ' =4 or V = B.

First assume that V' = 4. Then

RV =V°<Z (G),
which implies that R/1 is nearly central in G by
Lemma 2.7 in [15]. Hence
|GHRIG/Co(R)H R G/ R
divides pg for some primes p and g. Therefore G is
either nearly o -nilpotent or a Schmidt group with
abelian Sylow subgroups.

Now consider the case when V' =B is o -sub-
normal in G. Since G is not nearly © -nilpotent, it is
not o -primary. Hence, in fact, ' = B is subnormal
in G, then

ye=y™=y" <M, =1
by [24, Chapter A, Theorem 14.3] and so |M |=¢,
which implies that G is a Schmidt group with abe-
lian Sylow subgroups, contrary to our assumption on
G. This contradiction completes the proof of the
necessity of the condition of the theorem.

Sufficiency. If G is nearly o -nilpotent, then
every maximal subgroup of G is nearly o -sub-
normal in G by Lemma 2.11 (6) in [15]. Finally, if G
is a Schmidt group with abelian Sylow subgroup,
then G=RxM, where R is a minimal normal
subgroup of G and M, is the maximal subgroup of
M by Lemma 2.12 in [15]. Hence every 2-maximal
subgroup of G is subnormal and so nearly © -sub-
normal in G. O

Proof of Theorem 1.12. Assume this theorem is
false and let G be a counter example of minimal order.

I. First we show that G is strongly supersolu-
ble. Suppose that this is false. Let R be a minimal
normal subgroup of G.
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(1) G/R is strongly supersoluble. Hence G is
primitive and so R ¢« ®(G) and
R=C;(R)=0,(G)
for some prime p. Lemma 2.15 (2) in [15] implies
that the hypothesis holds for G/ R, so the choice of
G implies that G/R is strongly supersoluble.
Therefore, again by the choice of G, R is the unique
minimal normal subgroup of G and R £ ®(G) by
Theorem A in [25]. Hence G is primitive and so
R=C;(R)=0,(G)
for some prime p by [24, Chapter A, 15.6].

(2) Every maximal subgroup M of G is strongly
supersoluble. By hypothesis every (n—1)-maximal
subgroup 7 of M is nearly S-permutable in G.
Hence T is nearly S-permutable in M by Lemma
2.15(3) in [15]. Since the solubility of G implies
that either | (M) |= n(G)| or |n(M) = =(G)|-1,
the hypothesis holds for M. It follows that M is
strongly supersoluble by the choice of G.

(3) G is supersoluble. Suppose that this is false.
Since every maximal subgroup M of G is strongly
supersoluble by Claim (2), G is an i -critical group.
Then Lemma 2.19 (1) in [15] yields that | ©(G) |=2
or |(G)|=3. But in the former case G is strongly
supersoluble by Theorem 1.5 (iii), so | ©(G)|=3 and
every 3-maximal subgroup of G is nearly S-permu-
table in G. Claim (1) and Lemma 2.15 (3) in [15]
imply that G = Rx S, where S is a Miller — Moreno
group. Moreover, since | n(S)|=2 and S is strongly
supersoluble by Claim (2), S is not nilpotent and so
S=0xT, where [Q]=g, |T|=¢ and Cy(Q)=0
for some distinct primes g and 7. Hence R is a 2-ma-
ximal subgroup of G, so every maximal subgroup of
R is nearly S-permutable in G. Therefore G is su-
persoluble by Lemma 2.16 (2) in [15].

Final contradiction for 1. From Claims (1) and
(3) we get that for some maximal subgroup M of G
we have G=RxM =C,(R)xM and |R|=p, so
M is cyclic. Since G is not strongly supersoluble,
for some prime ¢g dividing | M | and for the Sylow
g-subgroup Q of M we have | Q> ¢. First assume
that RQ # G, and let RQ <V, where V' is a maxi-
mal subgroup of G. Then V' is strongly supersoluble
by Claim (2). Hence C,(R)#1, contrary to
R=C;(R). Hence RQO=G and so |n(G)]=2.
Therefore G is strongly supersoluble by Theorem
1.3, a contradiction. Thus we have 1.

II. Now we show that G induces on any its
non-Frattini chief factor A /K an automorphism
group G/C,i(H/K) of order dividing p,---p,,
where m<n and p,,..., p, are distinct primes.

Let M be a maximal subgroup of G such that
K <M and MH =G. Then
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G/M,=(H/K)x(G/C,(H/K))
by Lemma 2.19 in [15]. If M #1, the choice of G
implies that m <n. Now suppose that M. =1, so
G=HxM, where | H|is aprime and H =C,(H).
Then, by Claim I, M is a cyclic group of order divid-
ing p,...p, for some distinct primes p,,...,p,,.

Assume that n <m. Then G has an n-maximal sub-
group T such that 7< M and | T| is not a prime,
contrary to Lemma 2.16 (1) in [15]. Thus we have II. O

Proof of Theorem 1.14. Suppose that this theo-
rem is false and consider a counter example (G, E)

for which | G| +| E| is minimal. Let Z =Z__(G).
(1) If R is a normal p' -subgroup of G, then
the hypothesis hold for (G/R,ER/R). First note
that PR/R=P is a Sylow p-subgroup of ER/R,
and if '/ R is a subgroup of PR/R, then for a Sy-
low p-subgroup W of V' we have V' /R=WR/R.
Moreover, if V/R is a maximal subgroup of
PR/R, then |P:W|=p and so W is a maximal

subgroup of p. On the other hand, if '/ R is a cy-
clic subgroup of PR/R of order p or order 4, then
W is a cyclic subgroup of p of order p (respectively
of order 4) since W =V /R. Hence the hypothesis
folds for (G/R,ER/R) by Lemma 2.2 (1) in [26].

(2) 0,(G)=1. Assume that O,(G)=#1, and

let R be a minimal normal subgroup of G contained
in  O0,(G). Then the hypothesis holds for

(G/R,ER/R) by Claim (1), so
(ER/R)/O,(ER/R)
is hypercyclically embedded in G/ R and
ER/R=E/(ENR)
is p-nilpotent. Hence E is p-nilpotent and from
(ER/R)/O,(ER/R)=
=(ER/R)/(O,(ER)/ R)=
=(ER/R)/(O,(E)R/R)
and from the G-isomorphisms
(ER/R)/(O,(E)R/R)=ER/O,(E)R =
=E/(ENO,(E)R)=
=E/O,(EXENR)=E/O,(E)
we get that £/0, (E) is hypercyclically embedded in
G, contrary to the choice of (G, E). Hence we have (2).
(3) ZNE < Z_(E). Indeed, since Z is clearly

supersoluble, a Sylow g-subgroup ¢ of Z, where ¢ is
the largest prime dividing | Z|, is normal and so
characteristic in Z. Then ¢ is normal in G, which
implies that Z = Q by Claim (2),s0 ZNE<Z (E)
since (p—L|E|)=1.

(4) E is p-nilpotent. Assume that this is false.
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(a) E =G. Since the hypothesis holds for (E, E)
by Lemma 2.2 (2) in [26], in the case when E # G,

the subgroup E is p-nilpotent by the choice of G.

(b) Every cyclic subgroup of p of order p and
order 4 are m-S-supplemented in G. It is enough to
show that some maximal subgroup of p is not
m-S-supplemented in G. Suppose that this is false.

First we show that O,(G)#1. Assume that

0,(G)=1. Let V' be a maximal subgroup of p.
There are a nearly S-permutable subgroup S and a
subgroup 7 of G such that G=VT and
VAT <S<V. Let 4 be a nearly modular subgroup
and B an S-permutable subgroup of G such that
S =(A4,B). Then BP* = P*"B=P" forall xeG, so
B<F;=0,(G)=1. Hence S=4 and 4, =1, the-
refore S<Z<Z (G) by Lemma 2.4 in [26] and
Claim (3) since £=G by Claim (a). Since Z_(G)
is nilpotent, a Sylow p-subgroup of Z_(G) is nor-
mal in G, so 4=S=1 since V; =1. Therefore T is
a complement to ¥ in G, so for a Sylow p-subgroup
T, of T 'we have |T,|= p. Therefore T is p-nilpo-
tent since (p—1,| E|)=(p—1,|G|)=1. Hence every
maximal subgroup ¥ of p has a p-nilpotent com-

plement in G, so G is p-nilpotent by Lemma 2.13 in
[26]. This contradiction shows that O, (G) # 1.

Let R be a minimal normal subgroup of G
contained in O,(G). First we show that R # P. As-
sume that R=P and let V' be any maximal sub-
group of R. There are a nearly S-repmutable sub-
group S and a subgroup T of G such that G=VT
and VNT <S<V. Let 4 be a nearly modular sub-
group and B an S-permutable subgroup of G such
that S =(4,B). Then A4, =1, so 4° <Z by Lemma
2.4 in [26]. Therefore 4=1 and so S =B is S-per-
mutable in G. But then § is normal in G by Lemma
1.2.16 in [27]. Hence S =1 and so TN}V =1. But
then 1<TNR<R, where TR 1is normal in G.
This contradiction shows that R # P. Therefore the
hypothesis holds for G/ R, so G/R is p-nilpotent.
Hence G is p-soluble. Therefore every minimal
normal subgroup R of G is a p-group by Claim (2),
hence R is a unique minimal normal subgroup of G
and RLD(G), so R=C,(R)=0,(G) by [24,
Chapter A, Theorem 15.6]. It is clear also that
|R[>p, so Z=1.

Let V' be a maximal subgroup of p such that
RV =P. Then W=VANR is normal in p,
| P:W |= p and V, =1. There are a nearly S-permu-
table subgroup S and a subgroup T of G such that
G=VT and VT <S <V. Arguing as above, we
can show that S is S-permutable in G. It follows that
§<0,(G)=R. Hence S<RNV =W and so
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§9 =879 8" <w by [27, Lemma 1.2.16],
which implies that S =1. Then 7T is a complement to
V' in G, so T is p-nilpotent.

Now let V' be any maximal subgroup of p con-
taining R, and let M be a maximal subgroup of G
such that G=RxM. Then M =G/R is p-nilpo-
tent, so M is a p-nilpotent supplement to ¥ in G.
Thus every maximal subgroup of p has a p-nilpotent
supplement in G. Therefor G is p-nilpotent by
Lemma 2.13. This contradiction shows that some
maximal subgroup of p is not weakly S-permutable
in G, so we have (b) by hypothesis.

Final contradiction for (4). Since G is not
p-nilpotent, it has a non-nilpotent subgroup H such
that every proper subgroup of H is nilpotent by [23,
IV, Satz 5.4]. Moreover, Proposition 1.9 in [29,
Chapter 1] implies that H = H ,xH , where H, is

a Sylow p-subgroup and H, is a Sylow g-subgroup
of H for some prime ¢ # p and the following hold:
(i) H, is of exponent p or exponent 4 (if p =2 and
H, is non-abelian); (ii) H, is the smallest normal
subgroup of H with nilpotent quotient H/H;
(i) H,/®(H,) is a chief factor of H. Then
C,(H,/®(H,)+#H since H/®(H,) is not nil-
potent. Therefore |H,/®(H,)[>p since clearly
(p—1L|H|)=1. Lemma 2.2 (2) in [26] and Claim
(b) imply that every cyclic subgroup of H, of order
p and order 4 are weakly S-permutable in H. On the
other hand, Property (i) implies that Q(H,)=H
and so H, is hypercyclically embedded in H by
Lemma 2.12 in [26] and so | H, /®(H ) |= p. This

contradiction completes the proof of (4).

The final contradiction. Claims (2) and (4) im-
ply that £ =P is a normal p-subgroup of G. Let
D =0Q(C), where C is a Thompson critical sub-
group of E. If D<E, then D is hypercyclically
embedded in G by the choice of (G,E) and so in
this case E is hypercyclically embedded in G by
Lemma 2.11 in [26]. Therefore D=E and so E is
hypercyclically embedded in G by Lemma 2.12 in
[26]. This final contradiction completes the proof of
the result. O

Proof of Theorem 1.15. Suppose that this theo-
rem is false and consider a counterexample (G, FE)

for which | G |+]| E | is minimal.

First we show that E is 2’ -supersoluble and so
E is soluble. Assume that this is false.

(a) E=G. Hence every proper subgroup of G
is 2" -supersoluble. Indeed, the hypothesis holds for
(E,E) by Lemma 2.2 (2) in [26], so in the case when

E # G the choice of (G,E) implies that £/O,(E)
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is supersoluble and hence E is 2'-supersoluble,
contrary to our assumption on £. Hence £ =G, so
we have (a) by Lemma 2.2 (2) in [26].

(b) G is soluble. Assume that this is false and
let F = F(G). Then F =®(G) since otherwise G is

soluble by Claim (a). Moreover, G/F is a non-
abelian simple group and every maximal subgroup
of G/F is soluble. Therefore, in view of [28],
G/ F is isomorphic with some of the following
groups: PSL,(p), where p >3 is a prime such that

p’ +1=0(5); PSL,(3”), where p is an odd prime;
PSL,(2"), where p is a prime; PSL,(3); Suzuki
group Sz(2”), where p is an odd prime.

Let » be the largest prime dividing |G/ F|
and let G, be a Sylow r-subgroup of G. Then r >3
by the Burnside p“gq”-theorem. Let p#r be any
odd prime dividing [G/F| and let C, be a sub-
group of G of order p. We show that C, < F. Sup-
pose that this is false. By hypothesis, C, is weakly
S-permutable in G. First assume that C, is nearly

S-permutable in G. Then there is a proper subgroup
T of G such that C,T=G and C,NT =1. Hence

|G:T|=p, so T is a maximal subgroup of G. By
considering the permutation representation of G /T
on the right coset of 7 /T, one can see that G/T,

is isomorphic with some subgroup of the symmetric
group S, of degree p. Since 7' is a maximal sub-

group of G, F=®(G)<T. Hence T;,=F, so
p =r. This contradiction shows that for every prime
2< p<r dividing |G/ F |, every subgroup C, of
G of order p with C, & F is nearly S-permutable in
G. Then C, is either nearly modular or nearly S-per-
mutable in G. Moreover, Cp is not normal in G, so

in the former case we have (Cp)G is hypercyclically

embedded in G by Lemma 2.4 in [26] and hence
(C p)GF /F=G/F is soluble. This contradiction

shows that C, is S-permutable in G, so C, <O,(G)
and hence G =FO,(G) is soluble. This contradic-
tion completes the proof of the fact that C, < F..

Let P be a Sylow p-subgroup of F. Then p is
characteristic in F and so it is normal in G. Let

R=(G )" forsome xeG. Then V=PxR#G, so
V' is supersoluble by Claim (a). But then V' = PxR
since 7> p, so R <C,(P). But then (G,) <C,(P).
Since r divides |G/ F |, (G,)° £ F and hence
G=(G,) F=(G,)®(G)=(G,)’.
Therefore P<Z(G) and P<®D(G)=F. Now let
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W be aHall p'-subgroup of F. Then
PW/IW<Z(G/W) and PW /W <DO(G/W)
and so p divides | M(G/F)|, where M(G/F) is

the Schur multiplicator of G/ F. But

n(| M(G/F)]) < {2,3)
(see [29, Chapter 4]). Therefore p =3 since p > 2
and so n(G/F)={2,3,r}. But from the above we

also know that G/F is a minimal non-soluble
group, so from [29, Chapter 4] we deduce that the
Schur multiplicator of G/ F is of order 2. This con-
tradiction completes the proof of the fact that G is
soluble.

Let p be any odd prime. We show that G is
p-supersoluble. Suppose that this is false. Then p

divides |G| and G is a minimal non-p-supersoluble

group.
It is well-known that the class of all p-super-
soluble groups § is a saturated formation. Hence G

has a normal subgroup D such that G/D is p-su-
persoluble and D is a g-group for some prime q. It
is clear that ¢ = p, so D is hypercyclically embed-

ded in G by Theorem 1.14. Hence G is p-superso-
luble. This contradiction completes the proof of the
fact that E is 2’ -supersoluble.

Let {p,,...p,} be the set of all odd primes di-

viding |E|. Then O, (E)n---n0, (E)=0,(E).
On the other hand, E/O, (E) is supersoluble by
Theorem 1.14 for all i=1,...,n, so E/O,(E) is
supersoluble. Assume that O,(E) #1. The subgroup
O,(E) is characteristic in E, so it is normal in G.
The hypothesis holds for (G/O,(E),E/O,(E)) by
Lemma 2.2 (1) in [26], so the choice of (G, E) im-
plies that H /O, (E) is hypercyclically embedded in
G/O,(E), so E/O,(E) is hypercyclically embed-
ded in G. Therefore O,(E) =1, so E is supersoluble.

Now let E, be a Sylow g-subgroup of E,
where ¢ is the largest prime dividing |E | Then E,
is characteristic in £, so E, is normal G. The hy-
pothesis holds for (G,E,)) and (G/E_,E/E,) by
Lemma 2.2 (1) in [26], so in the case when E, < E,
E, and E/E, are hypercyclically embedded in G.

But then E is hypercyclically embedded in G, contra-
ry to the choice of (G, E). Hence E, =E, so E is

hypercyclically embedded in G by Theorem 1.14. This

final contradiction completes the proof of the result.
Proof of Theorem 1.16. Suppose that this theo-

rem is false and consider a counterexample (G, E) for

which |G |+]| E| is minimal. Let p be the least prime
dividing |E | and let p be a Sylow p-subgroup of E.
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Note that the hypothesis holds for (£,FE) by

Lemma 2.2 (2) in [26], so E is p-supersoluble by
Theorem 1.14 and hence E is p-nilpotent since p is

the least prime dividing |E | Note also that if X isa

non-identity Hall subgroup of E, then X =FE. In-
deed, the hypothesis holds for (G/ X,E/ X) and for

(G,X) by Lemma 2.2 (1) in [26]. Hence in the case

X # E the choice of G implies that £/ X and X
are hypercyclically embedded in G. Hence E is
hypercyclically embedded in G by the Jordan-
Holder theorem for the chief series. This contradic-
tion shows that £ = P, so E is hypercyclically em-
bedded in G by Theorem 1.14. The theorem is
proved.
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